Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7190-7198    https://doi.org/10.11896/cldb.19110213
  高分子与聚合物基复合材料 |
木材形状记忆效应与机理的研究进展
邵亚丽1,2, 王喜明1
1 内蒙古农业大学材料与艺术设计学院,呼和浩特 010018
2 内蒙古建筑职业技术学院,呼和浩特 010070
A Review of Shape Memory Effect and Mechanism of Wood
SHAO Yali1,2, WANG Ximing1
1 College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
2 Inner Mongolia Technical College of Construction, Hohhot 010070, China
下载:  全 文 ( PDF ) ( 6160KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 形状记忆聚合物(SMPs)是一种改变初始形状并固定后,通过外部刺激又恢复到原始形状的高分子材料。水是容易获得、环境友好的刺激物,水/水热响应的形状记忆材料成为近年来研究的焦点。木材是具有形状记忆效应的聚合物基天然高分子智能材料,可以通过压缩或弯曲等方法固定成临时形状,然后在水热作用下恢复到其永久形状。然而,与具有简单结构的SMPs相比,天然木材的微观构造由不同的组织结构、细胞形态和孔隙结构组成,化学结构由纤维素、半纤维素、木质素以氢键、共价键和物理结合相互嵌入渗透组成。木材复杂的微观构造和化学结构增加了表征形状记忆特性、构建架构模型、揭示记忆机理的难度。近年来,研究人员在干燥木材的过程中发现木材形状记忆效应基于准残余冻结应变的可逆应变,木材湿-热-力模型表征形变回弹率的Rr和形变固定率的Rf是冻结应变的函数。木材形状记忆编程过程有弯曲形状记忆、拉伸形状记忆、压缩形状记忆,定量表征SMPs的方法可应用于木材。聚合物形状记忆模型有交联网络模型、超分子网络模型、渗流网络模型、综合架构模型,其中综合架构模型由开关单元(Switch)和网络节点(Net points)组成,可用来全面解释SMPs的结构。在特定温度-湿度-机械力作用下,木材中的半纤维素最先降解,纤维素结晶度增加,木质素产生交联,可用细胞壁微形态变形理论、纤维素应力松弛理论和疏水化理论在分子水平上揭示消除形状记忆的机理。鉴于以上内容,本文以冻结应变为研究木材形状记忆效应的基础,结合形状记忆编程中定量评价的方法,分析形状记忆材料的架构模型以及木质材料的空间结构,并阐述了在特定温度-湿度-机械力耦合作用下消除木质材料形状记忆效应的机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵亚丽
王喜明
关键词:  木材  水响应形状记忆效应  冻结应力  温度-湿度-机械力耦合作用  形状记忆机理    
Abstract: Shape memory polymers (SMPs) have the ability to respond to specific stimuli and return from a temporary shape to an original shape. Water is a readily available, environmentally friendly stimuli, so hydro-thermal response or water-induced shape memory materials have become the focus of research. Wood is a polymer-based natural intelligent materials with a shape memory effect that can be fixed into a temporary shape by a predetermined method such as compression or bending, and then restored to its permanent shape under hydrothermal action. However, compared with the artificial SMPs, the microscopic structure of natural wood is composed of different tissue structure, cell morphology and pore structure, and the chemical structure is composed of cellulose, hemicellulose and lignin embedded and permeated by hydrogen bond, covalent bond and physical combination. The complex microstructure and chemical structure of wood increase the difficulty of representing the characteristics, constructing the theoretical model and revealing the mechanism of shape memory. Recently, It is found that the shape memory effect of wood in the process of drying wood is based on the reversible strain of quasi-residual frozen strain. By studying the thermo-hydro-mechanical strains model of wood, it is found that the Rr which characterizing the deformation resilience and the Rf which characterizing the deformation fixation rate are functions of the freezing strain. The programming process of wood shape memory includes bending shape memory, stretching shape memory, compression shape memory. Quantitative characterization of shape memory polymers can be applied to wood. There are four types of polymers shape memory models: cross-linked network model, supra-molecular network model, percolation network model and overall architecture model. The overall architecture of SMPs composed of switching units and network nodes can be used to fully explain the structure of shape memory polymers. The cellulose, hemicellulose and lignin in wood have corresponding changes under the action of specific thermo-hydro-mechanical. At the molecular level, the mechanisms for eliminating the shape memory effect are revealed based on the changes of three major elements, including the theory of cell wall micromorphic deformation, the theory of cellulose stress relaxation and hydrophobization. In summary, this paper takes the frozen strain as the basis for studying the shape memory effect of wood. The methods of quantitatively eva-luating shape memory effects are reviewed. The structural model of the shape record material and the spatial structure of the wood material is analyzed. The mechanism of eliminating the shape memory effect of wood materials under the action of thermo-hydro-mechanical (THM) is described.
Key words:  wood    water-responsive shape memory effect    frozen strain    thermo-hydro-mechanical strains (THM)    mechanism of shape me-mory
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  S781.6  
基金资助: 内蒙古自治区科技计划项目(201802031);内蒙古自治区科技创新团队计划项目(20140401)
作者简介:  邵亚丽,2012年6月毕业于内蒙古农业大学,获得工学硕士学位。现为内蒙古农业大学材料学院博士研究生,在王喜明教授的指导下进行研究。目前主要研究领域为生物质材料功能性改良。
王喜明,内蒙古农业大学教授、博士研究生导师。1985年7月本科毕业于内蒙古林学院,2000年7月在北京林业大学木材科学与技术专业取得博士学位,2001—2004年在中国林业科学研究院进行博士后研究工作。2001—2006年分别在加拿大国家林产品研究院、美国农业部林务厅南方实验站、日本京都府立大学作访问学者。现任全国木材干燥研究会副会长,西北地区木材工业委员会副主任,全国木材标准化委员会委员,东北林业大学兼职教授,内蒙古自治区沙生灌木资源开发工程技术研究中心主任,内蒙古自治区沙生灌木资源利用研究会会长,内蒙古林学会林产工业委员会主任。主要从事生物质材料相关领域的研究。近年来,在木材科学领域发表多篇论文,包括Rioresources、Acta Polymerica Sinica、Plos One、Wood Science and Technology、Journal of Supercritical Fluids等。
引用本文:    
邵亚丽, 王喜明. 木材形状记忆效应与机理的研究进展[J]. 材料导报, 2021, 35(7): 7190-7198.
SHAO Yali, WANG Ximing. A Review of Shape Memory Effect and Mechanism of Wood. Materials Reports, 2021, 35(7): 7190-7198.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110213  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7190
1 Wang W X, Liu Y J, Leng J S. Coordination Chemistry Reviews, 2016, 320-321(1), 39.
2 Hu J L, Zhu Y, Huang H H, et al. Progress in Polymer Science, 2012, 37 (12), 1721.
3 Liu T Z, Zhou T Y, Yao Y T, et al. Composites: Part A, 2017, 100(5), 21.
4 Wang K J, Strandman S, Zhu X X. Frontiers of Chemical Science and Engineering, 2017, 11(2), 144.
5 Chen H M, Wang L, Zhou S B. Chinese Journal of Polymer Science, 2018, 36(12), 2.
6 Liu Z Q, Jiao D, Zhang Z F. Biomaterials, 2015,65(10),14.
7 Xiao X L,Hu J L. Scientific Reports,2016, 6(5), 26393.
8 Emile O, Le Floch A, Vollrath F. Nature, 2006, 440(20), 621.
9 Venkatesan H, Chen J M, Liu H Y, et al. Materials Chemistry Frontiers, 2019,11(3), 2473.
10 Ugolev B, Gorbacheva G, Belkovskiy S. In: Proceedings Annual IAWS Meeting 《Wood the Best Material for Mankind》 and the 5th International Symposium on the Interaction of Wood with Various Forms of Energy. Slovakia, 2013, pp. 37.
11 Yang B, Li C, Lee C M, et al. Smart Materials and Structures, 2004, 13(1), 192.
12 Huang W M, Yang B, An L, et al. Applied Physics Letters, 2005, 86(11), 114105.
13 Yang B, Huang W M, Li C, et al. Polymer, 2006, 47(4), 1349.
14 Jung Y C, So H H, Cho J W. Journal of Macromolecular Science Part B-Physics, 2006, 45(4), 461.
15 Mendez J, Annamalai P K, Eichhorn S J, et al. Macromolecules, 2011, 44(17), 6835.
16 Zhu Y, Hu J L, Luo H S, et al. Soft Matter, 2012, 8(8), 2517.
17 Luo H, Hu J L, Zhu Y. Materials Letters, 2011, 65(s 23-24), 3585.
18 Luo H, Hu J L, Zhu Y, et al. Journal of Applied Polymer Science, 2012, 125(1), 657.
19 Zhang K, Geissler A, Standhardt M, et al. Scientific Reports, 2015, 5(1), 12309.
20 Wang Y Z, Cheng Z J, Liu Z G, et al. Journal of Materials Chemistry B, 2018, 6(11), 1677.
21 Fang Z Q, Kuang Y D, Zhou P P, et al. ACS Applied Materials & Interfaces, 2017, 9 (6), 5502.
22 Xie Y F, Lei D, Wang S F, et al. ACS Biomaterials Science & Enginee-ring, 2019, 5(4), 1676.
23 Xiao X L, Hu J L, Gui X T, et al. Polymer Chemistry, 2016, 8(1), 294.
24 Shen J H, Xie Y M, Zhou S W, et al. Journal of the Mechanical Beha-vior of Biomedical Materials, 2014, 34C, 293.
25 Gorbacheva G A, Olkhov Y A, Ugolev B N. In: 57th SWST International Convention 7th Wood Structure and Properties Conference 6th European Hardwood Conference. Zvolen, 2014, pp. 187.
26 Kutnar A, Sandberg D, Haller P. Holzforschung, 2015, 69(7), 885.
27 Chen C, Song J, Zhu S, et al. Chem, 2018,4, 1.
28 Guan H, Cheng Z Y, Wang X Q. ACS Nano, 2018, 12(10), 10373.
29 Wang K L, Liu X R, Tan Y, et al. Chemical Engineering Journal, 2019, 371, 780.
30 Ugolev B N . Wood Science and Technology, 1976, 10(3), 181.
31 Ugolev B N. Wood Science and Technology, 2014, 48(3), 568.
32 Gorbacheva G A, Ugolev B N, Sanaev V G, et al. Proligno, 2015, 11(4), 72.
33 Tobushi H, Hashimoto T, Hayashi S, et al. Journal of Intelligent Mate-rial Systems and Structures, 1997, 8(8), 718.
34 Gall K, Dunn M L, Liu Y, et al. Acta Materialia, 2002, 50(2), 5126.
35 Xie T. Nature, 2010, 464(141), 270.
36 Lan X, Wang X H, Liu Y J, et al. Smart Materials and Structures, 2009, 18(2), 024002.
37 Liu Y, Gall K, Dunn M L, et al. Smart Materials and Structures, 2003, 12(6), 954.
38 Jakes J E, Nayomi N, Zelinka S, et al. In: Proceedings, 2012 International Conference on Nanotechnology for Renewable Materials. Canada, 2012, pp. 368
39 Xie Y F, Lei D, Wang S F, et al. ACS Biomaterials Science & Enginee-ring, 2019, 5(4), 1676.
40 Obataya E, Chen S Y. Wood Science and Technology, 2018, 52(4), 1023.
41 Ota S. Radiation Physics and Chemistry, 1981, 18(1), 87.
42 Lendlein A, Kelch S, Kratz K, et al. Angewandte Chemie-International Edition, 2010, 33(40), 251.
43 Li J, Viveros J, Wrue M, et al. Advanced Materials, 2007, 19(19), 2855.
44 Zhang S, Yu Z J, Govender T, et al. Polymer, 2008, 49(15), 3210.
45 Hu J L, Chen S. Journal of Materials Chemistry B, 2010, 20(17), 3346.
46 Navi P, Heger F. Materials Research Society, Bulletin,2004,29(5),336.
47 Jakes J E, Nayomi N, Zelinka S, et al. In:2012 International Conference on Nanotechnology for Renewable Materials. Quebec, 2012, pp, 368.
48 Norimoto M, Ota C, Akitsu H, et al. Wood Research, 1993,79, 33.
49 Guo J, Song K L, Salmén L, et al. Carbohydrate Polymers, 2015, 115 (22), 214.
50 Miyoshi Y, Furutani M, Furuta Y. Zairyo, 2016, 65(5), 346.
51 Chen S Y, Obataya E, Matsuo-Ueda M. Wood Science and Technology, 2018, 52(5), 1241.
52 Laine K, Belt T, Rautkari L, et al. Journal of Materials Science, 2013, 48(24), 8538 .
53 Inoue M, Norimoto M, Tanahashi M, et al. Wood and Fiber Science, 1993, 25(3), 235.
54 Li L L, Yu J F, Shen Y L, et al. BioResources, 2018, 13(2), 3808.
55 Obataya E, Yamauchi H. Wood Science and Technology, 2005, 39(7), 559.
56 Yin J, Yuan T, Lu Y, et al. Carbohydrate Polymers, 2016, 155(8), 172.
57 Inoue M, Sekino N, Morooka T, et al. Journal of Tropical Forest Science, 2008, 20(4), 281.
58 Hill C A, Ramsay J, Barbara K, et al. Journal of Materials Science, 2012, 47(7), 3192.
59 Ito Y, Tanahashi M, Shigemitsu M, et al. Holzforschung,1998,52(2),221.60 Wikberg H, Maunu S L. Carbohydrate Polymers, 2004, 58(4), 466.
61 Guo J, Rennhofer H, Yin Y F, et al. Cellulose, 2016, 23(4), 2340.
62 Weiland J J, Guyonnet R. Holz Als Roh und Werkstoff, 2003, 61(3), 220.
[1] 孙振宇, 张源, 左迎峰, 吴义强, 王张恒, 吕建雄. 有机-无机复合改性速生木材研究现状与展望[J]. 材料导报, 2021, 35(5): 5181-5187.
[2] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[3] 戈雪良, 陆采荣, 梅国兴. 降温速率对混凝土冻结应力的影响及机理研究[J]. 材料导报, 2020, 34(8): 8051-8057.
[4] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[5] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[6] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[7] 王霞,安丽平,张晓涛,王喜明. 多孔材料用于木材干燥过程中VOCs吸附的研究进展和探讨[J]. 《材料导报》期刊社, 2018, 32(1): 93-101.
[8] 潘亚鸽, 朱凌波, 唐钱, 黄清华, 李新功. 麦秸/木材均质复合无机碎料板的制备及其性能*[J]. 《材料导报》期刊社, 2017, 31(4): 25-29.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed