Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4165-4169    https://doi.org/10.11896/cldb.20010070
  金属与金属基复合材料 |
水冷条件下WAAM温度场的数值模拟研究
陈克选1,2, 王向余1,2, 李宜炤1, 陈彦强1, 杜茵茵1
1 兰州理工大学材料科学与工程学院,兰州730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Numerical Simulation of WAAM Temperature Field Under Water Cooling
CHEN Kexuan1,2, WANG Xiangyu1,2, LI Yizhao1, CHEN Yanqiang1, DU Yinyin1
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology,Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 3991KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对熔化极丝材电弧增材制造(Wire arc additive manufacturing, WAAM)过程基板散热条件差导致热积累严重的问题,采用基板背面加水冷铜板的散热方式改善增材过程的散热,利用Abaqus软件分别模拟了有无水冷两种条件下增材时温度场的变化规律,并对模拟过程进行实验验证。结果显示,实验条件下基板测量点热循环曲线与模拟结果基本一致。有无水冷两种条件下基板温度均在第七层时达到最大;基板上高温区域扩展面积最大,基板在水冷条件下的冷却速率远大于无水冷条件下的冷却速率,且“双峰”效应较为明显。堆积第一层至第七层时,有无水冷两种条件下各层平均温度梯度逐渐减小,但前者始终大于后者,熔池体积不断变大。第七层至第十层时,成型件热积累接近饱和状态,此阶段成型件最易发生严重塌陷。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈克选
王向余
李宜炤
陈彦强
杜茵茵
关键词:  水冷条件  WAAM温度场  数值模拟  温度梯度    
Abstract: In order to solve the problem of serious heat accumulation caused by the poor heat dissipation condition of the substrate during the process of gas metal wire arc additive manufacturing (WAAM), the heat dissipation method of the substrate with water-cooling copper plate was used to improve the heat dissipation condition of the additive process. The temperature field change of additive manufacturing under the conditions of water cooling and without water cooling are simulated respectively using Abaqus software, and the simulation process is verified experimentally. The results show that the thermal cycle curve of the measurement point of the substrate under the experimental conditions is basically consistent with the simulation result. In both conditions with and without water cooling, the substrate temperature reached the maximum at the seventh layer, and the expanding of the high temperature area on the substrate was the largest. The cooling speed of the substrate under water cooling was much faster than that without water cooling, and the “double peak” effect was more obvious. When the first layer to the seventh layer are stacked, the average temperature gradient distribution of each layer with or without water cooling gradually decreases, but the former is always greater than the latter, and the volume of the molten pool continues to increase. During the seventh to tenth layers, the heat accumulation of the formed part is close to saturation, and it is most prone to severe collapse at this stage.
Key words:  water-cooling condition    WAAM temperature field    numerical simulation    temperature gradient
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TG402  
通讯作者:  chenkx@lut.edu.cn   
作者简介:  陈克选,兰州理工大学材料科学与工程学院教授,硕士研究生导师,培养及合作培养研究生30余人。分别主持并参加完成省级和国家自然科学基金项目、省科技攻关项目及重大横向科研项目10余项。先后获国家机械工业局科技进步三等奖、省电子信息系统技术开发推广应用优秀成果一等奖、省高校科技进步一等奖等奖项及校“三育人”奖、学报优秀作者及“挑战杯”优秀指导教师等荣誉称号。任中国焊接学会熔焊专业委员会委员、全国高协组织教材研究与编写委员会委员等职务。目前主要从事新型弧焊电源及智能控制、焊接过程控制及计算机应用以及电弧增材制造设备及工艺等领域的研究工作。
王向余,2017年9月考入兰州理工大学材料科学与工程学院,硕士研究生在读。2018年10月至2019年5月参与并完成“自动等离子喷焊设备研制”项目。目前主要从事电弧增材制造工艺与仿真方面的研究工作。
引用本文:    
陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
CHEN Kexuan, WANG Xiangyu, LI Yizhao, CHEN Yanqiang, DU Yinyin. Numerical Simulation of WAAM Temperature Field Under Water Cooling. Materials Reports, 2021, 35(4): 4165-4169.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010070  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4165
1 Zhang X J, Tang S Y, Zhao H Y, et al.Journal of Materials Engineering, 2016, 44(2), 122(in Chinese).
张学军, 唐思熠, 肇恒跃, 等.材料工程, 2016, 44(2), 122.
2 Guo Z F, Zhang H.Machine Tool & Hydraulics, 2015, 43(5), 148(in Chinese).
郭志飞, 张虎.机床与液压, 2015, 43 (5), 148.
3 Wu B T, Pan Z X, Ding D H, et al.Journal of Manufacturing Processes,2018, 35(8), 127.
4 William E.Frazier.Journal of Materials Engineering and Performance, 2014, 23(6), 1917.
5 He G Y, Gu Y F, Zhu M, et al.Hot Working Technology, 2016, 45(19), 176(in Chinese).
何冠宇, 顾玉芬, 朱明, 等.热加工工艺,2016, 45(19), 176.
6 Luo Y, Zhu L, Han J T, et al.Journal of Mechanical Engineering, 2019, 55(3), 219(in Chinese).
罗怡, 朱亮, 韩静韬, 等.机械工程学报, 2019, 55(3), 219.
7 Beardsley H, Kovacevic R. In: Conference Record of the 2006 Proc. 5th Int'l Conf on Trends in Welding Research. Pine Mountain, GA, 2006.
8 Wang L L, Zhang Z H, Xu D W, et al.Transactions of the China Welding Institution, 2019, 40(4), 137(in Chinese).
王磊磊, 张占辉, 徐得伟, 等.焊接学报, 2019, 40(4), 137.
9 Xiong J, Lei Y Y, Li R, et al.Applied Thermal Engineering, 2017, 126, 43.
10 Wu B T, Pan Z X, Ding D H, et al.Journal of Materials Processing Technology, 2018, (258), 97.
11 Lei Y Y, Xiong J, Li R, et al.Transactions of the China Welding Institution, 2018, 39(5), 73(in Chinese).
雷洋洋, 熊俊, 李蓉, 等.焊接学报, 2018, 39(5), 73.
12 Ding J, Colegrove P, Mehnen J, et al.Computational Materials Science, 2011, 50(12), 3315.
13 Montevecchi F, Venturini G, Grossi N, et al. Manufacturing Letters, 2018, 17, 14.
14 Hackenhaar W, Mazzaferro J A E, Montevecchi F, et al. Journal of Ma-nufacturing Processes, 2020, 52, 58.
15 Graf M, Hälsig A, Höfer K, et al. Metals, 2018, 8(12), 1009.
16 Zhao H H, Zhang G J, Yin Z Q, et al.Journal of Materials Processing Technology, 2011, 211, 488.
[1] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[2] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[3] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[4] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[5] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[6] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[7] 何秋霖, 石少卿, 崔廉明, 孙建虎, 陈自鹏. 轻质材料构筑的蜂窝防护结构抗爆性能试验与数值模拟研究[J]. 材料导报, 2020, 34(24): 24023-24028.
[8] 赵颖, 裴久杨, 郭丽丽, 运新兵, 马怀超, 李冰. 宽厚比对双杆连续挤压6063铝合金焊合质量的影响[J]. 材料导报, 2020, 34(24): 24114-24120.
[9] 朱军, 李姝, 王斌, 张驰, 李冬, 康敏. 钒氮合金制备过程温度场模拟[J]. 材料导报, 2020, 34(22): 22100-22104.
[10] 张淞凯, 袁鸿. 山棕纤维/天然乳胶复合材料床垫的横观各向同性参数研究[J]. 材料导报, 2020, 34(22): 22154-22161.
[11] 刘杭, 李明伟, 王鹏飞, 胡志涛, 尹华伟. 二维圆周平动法ADP单晶生长流动与传质数值模拟[J]. 材料导报, 2020, 34(20): 20022-20027.
[12] 方姚, 张勇, 冉真真. 中深层地热井固井导热水泥导热系数研究[J]. 材料导报, 2020, 34(20): 20028-20033.
[13] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[14] 赖家美, 阮金琦, 王森, 黄志超. 缝合泡沫复合材料弯曲性能研究[J]. 材料导报, 2020, 34(18): 18165-18170.
[15] 余为, 张雄博. 考虑界面的空心玻璃微珠/环氧树脂复合泡沫材料的力学性能仿真分析[J]. 材料导报, 2020, 34(16): 16161-16166.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed