Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20028-20033    https://doi.org/10.11896/cldb.19030004
  无机非金属及其复合材料 |
中深层地热井固井导热水泥导热系数研究
方姚, 张勇, 冉真真
东南大学能源与环境学院,能源热转换及其过程测控教育部重点实验室,南京 210096
Thermal Conductivity of Cementing Conductive Cement in Medium and Deep Geothermal Well
FANG Yao, ZHANG Yong, RAN Zhenzhen
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
下载:  全 文 ( PDF ) ( 3886KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 合理提高固井水泥的导热系数对地热井的高效、稳定运行有着至关重要的作用。针对现有地热井固井水泥导热系数低的问题,首先基于前人研究成果,建立了中深层地热井固井水泥导热系数模型,然后研究了石英粉、氧化铝粉对固井水泥基材料导热性能的增强效果。最后采用数值模拟的方法,研究了填充材料的体积分数、颗粒的形状、粒径对固井水泥基材料导热系数的影响。结果表明:添加石英粉和氧化铝粉后,固井水泥基材料的导热系数都有不同程度的提高,所建模型确立了固井复合水泥基材料导热系数的上限;随着填充材料体积分数的增大,水泥基材料的导热系数不断增大;球形填充颗粒要比正方体填充颗粒的效果差;外掺粒径小的颗粒有助于提高水泥基材料的导热性能,此外,填料粒径之间的合理搭配可使得相同填料比例达到不同的导热系数增强效果;当填充材料的颗粒形状相同或当填充材料颗粒粒径不同时,水泥基材料导热系数的增强效果还与填料的分布方式有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方姚
张勇
冉真真
关键词:  导热水泥  强化传热  模型  粉体  数值模拟    
Abstract: The cement-based material with a higher thermal conductivity plays an essential role for the efficient and stable operation of geothermal well. To solve the problem of low thermal conductivity of cement-based materials in geothermal well, the thermal conductivity model of cement for medium and deep geothermal well is established on the basis of previous studies. The effects of quartz powder and alumina powder on thermal conductivity of cement-based materials are studied experimentally in this work. The influence of volume fraction, particle shape and particle size of filling material on thermal conductivity of cement-based materials is studied by the numerical simulation. The results show that after adding quartz powder and alumina powder, the thermal conductivity of cement-based materials is improved to some extent. According to the model, the upper limit of thermal conductivity of cement-based materials is established. With the increase of volume fraction of filling materials, the thermal conductivity increases continuously. Improvement of thermal conductivity by filling spherical particles is worse than cubic ones. Adding small particles with small particle size helps to improve the thermal conductivity of cement-based materials. In addition, the reasonable mix of filler particle sizes can make the same filler ratio achieve different thermal conductivity enhancement effects.When the particle shape of filling materials is the same or the particle size of filling materials is different, the enhancement effect of thermal conductivity is related to the distribution of filling materials.
Key words:  heat conductive cement    enhancement of heat transfer    model    powders    numerical simulation
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TU528.53  
基金资助: 高等学校全国优秀博士学位论文作者专项资金(201440);中央高校基本科研业务费专项资金(2242015R30004)
通讯作者:  zyong@seu.edu.cn   
作者简介:  方姚,东南大学能源与环境学院硕士研究生,主要从事中深层地热井固井材料的研究。
张勇,东南大学能源与环境学院,副研究员。主要从事生物质能热化学转化、污染物控制及其多相流动数值模拟、中深层地热高效利用的研究。
引用本文:    
方姚, 张勇, 冉真真. 中深层地热井固井导热水泥导热系数研究[J]. 材料导报, 2020, 34(20): 20028-20033.
FANG Yao, ZHANG Yong, RAN Zhenzhen. Thermal Conductivity of Cementing Conductive Cement in Medium and Deep Geothermal Well. Materials Reports, 2020, 34(20): 20028-20033.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030004  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20028
1 Hu J W, Yan J H, Wang S J. Environmental Protection, 2018, 46(8),45(in Chinese).
胡俊文, 闫家泓, 王社教. 环境保护, 2018, 46(8),45.
2 Poullikkas A. Energy Policy, 2009, 37(9),3673.
3 Glassley G, William E. Geothermal energy-renewable energy and the environment, CRC Press, 2010.
4 Zhang J Y. Science and Technology Innovation Herald, 2017, 14(36),44(in Chinese).
张家云. 科技创新导报, 2017, 14(36),44.
5 Zhang L, Li D G. Journal of Zhengzhou University (Natural Science Edition), 2006, 38(1),105(in Chinese).
张雷, 李冬光. 郑州大学学报(理学版), 2006, 38(1),105.
6 Yan G, Wei B R, Yang H T, et al. Fiber Reinforced Plastics/Compo-sites, 2006(3),50(in Chinese).
闫刚, 魏伯荣, 杨海涛, 等. 玻璃钢/复合材料, 2006(3),50.
7 Zhang W P, Xing Y S, Gu X L. Structural Engineers, 2012, 28(2),39(in Chinese).
张伟平, 邢益善, 顾祥林. 结构工程师,2012,28(2),39.
8 Liu J H, Xu S L, Zeng Q. Journal of Building Materials, 2018, 21(2),293(in Chinese).
刘嘉涵, 徐世烺, 曾强. 建筑材料学报, 2018, 21(2),293.
9 Wang L C, Chang Z, Bao J W. Journal of Hydraulic Engineering, 2017, 48(7),765(in Chinese).
王立成, 常泽, 鲍玖文. 水利学报, 2017, 48(7),765.
10 Hai R, Bian Y D, Wu K R. Concrete, 2009(7),55(in Chinese).
海然, 边亚东, 吴科如. 混凝土, 2009(7),55.
11 Wen L M, Wang Q, Song P. Solar Energy, 2012(23),37(in Chinese).
温乐明, 王琦, 宋鹏. 太阳能, 2012(23),37.
12 Yuan W Y, Zhang X L, Hua W S, et al. Chemical Industry and Engineering Progress, 2018, 37(11),4405(in Chinese).
袁维烨, 章学来, 华维三, 等. 化工进展, 2018, 37(11),4405.
13 Shi T F, Li S Z, Zhang W X, et al. Materials Science and Engineering,1994(3),8(in Chinese).
石彤非, 李树忠, 张万喜, 等. 高分子材料科学与工程, 1994(3),8.
14 赵海涛, 吴胜兴, 魏珍中,等. 中国专利,CN103115942A, 2013.
15 Chen Y X. Qinghai Jiaotong Keji, 2013(3),5(in Chinese).
陈永霞. 青海交通科技, 2013(3),5.
16 Hansen C. Materials & Structures, 1986, 19(6),423.17 Zhang P, Xuan Y M, Li Q. Journal of Chemical Industry and Enginee-ring,2012, 63(2),335(in Chinese).
张平, 宣益民, 李强. 化工学报, 2012, 63(2),335.
18 Yang J X, Pang X M, Zhou J Q, et al. Mechanical and Electrical Engineering, 2016, 33(8),973(in Chinese).
杨晶歆, 庞旭明, 周剑秋. 机电工程, 2016, 33(8),973.
19 Li B,Liu Q. Plastics Additives, 2008(3),14(in Chinese).
李冰, 刘琴. 塑料助剂, 2008(3),14.
20 Xiao J Z, Song Z W, Zhang F. Journal of Building Materials, 2010, 13(1),17(in Chinese).
肖建庄, 宋志文, 张枫. 建筑材料学报, 2010, 13(1),17.
21 Qomi M J A, Ulm F J, Pellenq J M. Physical Review Applied, 2015, 3(6),64010.
[1] 李飘, 姚卫星. 镍基单晶合金低周机械疲劳寿命模型评述[J]. 材料导报, 2020, 34(9): 9124-9131.
[2] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[3] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[4] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[5] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[6] 刘杭, 李明伟, 王鹏飞, 胡志涛, 尹华伟. 二维圆周平动法ADP单晶生长流动与传质数值模拟[J]. 材料导报, 2020, 34(20): 20022-20027.
[7] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[8] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[9] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[10] 滕英跃, 候星成, 白雪, 刘全生, 李毅, 吴侃, 朱志成. 基于1H-NMR实验数据的三次样条插值函数模型对热解褐煤孔隙演化的研究[J]. 材料导报, 2020, 34(18): 18074-18080.
[11] 周立玉, 李秀兰, 王宣, 曾洪亮, 余杰. AZ31镁合金固态扩渗La2O3+Zn渗层组织演化过程研究[J]. 材料导报, 2020, 34(18): 18093-18097.
[12] 赖家美, 阮金琦, 王森, 黄志超. 缝合泡沫复合材料弯曲性能研究[J]. 材料导报, 2020, 34(18): 18165-18170.
[13] 刘朋, 王爱国, 刘开伟, 马瑞, 徐海燕, 孙道胜, 经验. 粒状煤矸石制备活性粉体材料的颜色转变及其量化表征[J]. 材料导报, 2020, 34(16): 16037-16042.
[14] 王家滨, 王斌, 张凯峰, 李恒. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061.
[15] 杨西荣, 郝凤凤, 罗雷, 刘晓燕, 马炜杰, 王立元. 大角度ECAP变形模具制备纯钛的变形织构演化模拟[J]. 材料导报, 2020, 34(16): 16077-16082.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed