Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18074-18080    https://doi.org/10.11896/cldb.19070116
  机非金属及其复合材料 |
基于1H-NMR实验数据的三次样条插值函数模型对热解褐煤孔隙演化的研究
滕英跃1,2, 候星成1,2, 白雪1, 刘全生1,2, 李毅1, 吴侃1, 朱志成1
1 内蒙古工业大学化工学院,呼和浩特 010051
2 内蒙古工业大学,内蒙古自治区低阶碳质资源高值功能化利用重点实验室,呼和浩特 010051
Study on the Pore Evolution of Pyrolysis Lignite via the Cubic Spline Interpolation Function Model Based on 1H-NMR Experimental Data
TENG Yingyue1,2, HOU Xingcheng1,2, BAI Xue1, LIU Quansheng1,2, LI Yi1,WU Kan1, ZHU Zhicheng1
1 College of Chemical Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
2 Inner Mongolia Key Laboratory of High-value Functional Utilization of Low Rank Carbon Resources, Inner Mongolia University of Technology, Huhhot 010051, China
下载:  全 文 ( PDF ) ( 5456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 孔是影响褐煤物理性质的重要因素,为了探究褐煤在不同热解温度下的孔径分布,本工作首先利用低场核磁技术(1H-NMR)获得了不同温度下热处理褐煤孔径分布的离散数据;然后基于这些离散数据构建了三次样条插值函数模型,通过构建的函数模型得到不同于离散数据的新的孔径分布数据;最后将由函数模型得到的新的孔径分布数据与实验数据对比,分析了函数模型的精度,重点考察了温度阈值范围,并从物理化学角度分析了孔径分布变化的原因。结果表明:随着实验温度的升高,胜利褐煤的孔结构在低于200℃时主要以小孔(10~100 nm)和大孔(100~1 000 nm)的形式存在;200~500℃微孔(<10 nm)和裂隙(>1 000 nm)居多;在715~950℃时产生更多的裂隙,总体向大孔和裂隙方向移动。函数模型在1H-NMR数据基础上能较准确地预测孔径分布及温度阈值,在预测热解褐煤总体孔径分布时,与实验数据相比,当温度低于550℃时,预测值的均方根误差(RMSE)偏小,当温度高于550℃时预测值的RMSE偏大。预测不同尺寸孔分布占比时,微孔的占比误差值仅在3.09%以内,小孔的占比误差为0.85%~22.12%,大孔的占比误差值为0.18%~7.95%,而裂隙的占比误差在4.43%以内,精度较高。通过函数模型预测得到,在200~300℃内热处理褐煤孔径分布变化趋势的温度阈值为250℃,这与实验结果的拟合度较高;在500~950℃内孔径分布变化趋势的温度阈值为715℃,这与实验得到的温度阈值700℃有偏差,是由函数模型在预测700℃下热处理褐煤总体孔径分布时的RMSE较大所致。预测结果说明了三次样条插值函数模型对不同温度热解褐煤煤样的孔径分布具有较好的预测精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
滕英跃
候星成
白雪
刘全生
李毅
吴侃
朱志成
关键词:  胜利褐煤  三次样条插值函数模型  热解  孔径分布  温度阈值    
Abstract: The pores in lignite are important factors affecting their physical properties. In this work, the low field nuclear magnetic resonance (1H-NMR) technique was used to obtain the discrete data of the pore characteristics of lignite at different temperatures. Secondly, based on these discrete data, a cubic spline interpolation function model was constructed, and the new aperture distribution data different from the discrete data was obtained through the constructed function model. Finally, the new pore size distribution data obtained by the function model is compared with the experimental data, and the prediction accuracy of the function model was analyzed, the temperature threshold range is mainly investigated, and the reasons for the variation of the pore size distribution were analyzed from the physicochemical point of view. The results show that with the increase of experimental temperature, the pore structure of Shengli lignite mainly exists in the form of small pores (10—100 nm) and macropores (100—1 000 nm) below 200℃, micropores (<10 nm) and cracks (>1 000 nm) are mostly in the range of 200—500℃, and more cracks are generated at 715—950℃, which generally move toward the macropores and cracks. The function model can accurately predict the pore size distribution and temperature threshold based on 1H-NMR data. When predicting the overall pore size distribution of pyrolysis lignite, the root mean square error (RMSE) of the predicted value is small when the temperature is lower than 550℃, and the RMSE of the predicted value is larger when the temperature is higher than 550℃ compared with the experimental data. When predicting the proportion of pore size distribution of diffe-rent sizes, the error value of the micropore is only within 3.09%, the error of the small pore is within 0.85%—22.12%, and the error of the macropore is within 0.18%—7.95%. The ratio of the crack is within 4.43%, and the precision of forecasting is better. The model predicts that the temperature threshold of the pore size distribution of heat-treated lignite within 200—300℃ is 250℃, which is more suitable for the test results. The predicted temperature threshold of the model within 500—950℃ is 715℃, which is different from the temperature threshold of 700℃ obtained by the test results. It is caused by the model predicting the large RMSE of the overall pore size distribution of the heat treated lignite at 700℃. The model prediction results show that the cubic spline interpolation model has better prediction accuracy for the pore size distribution of different temperature pyrolysis lignite coal samples.
Key words:  Shengli lignite    cubic spline interpolation function model    pyrolysis    pore size distribution    temperature threshold
                    发布日期:  2020-09-12
ZTFLH:  TQ533  
基金资助: 国家自然科学基金(21766023);内蒙古自然科学基金(2017MS0201);2019内蒙古自治区科技计划项目;内蒙古工业大学大学生 创新实验计划项目(2018086;2018064;2018074)
通讯作者:  bai_xue@imut.edu.cn   
作者简介:  滕英跃,内蒙古工业大学教授,硕士研究生导师,博士。主要从事能源化工、褐煤清洁利用等方面的理论与应用研究。发表论文10余篇,承担1项国家自然科学基金,多项省部级课题。
白雪,内蒙古工业大学教授,博士,硕士研究生导师。化工学院无机非金属材料工程系,主要研究领域为无机非金属材料/催化。承担两项国家自然科学基金项目,在SCI、EI上发表多篇论文。
引用本文:    
滕英跃, 候星成, 白雪, 刘全生, 李毅, 吴侃, 朱志成. 基于1H-NMR实验数据的三次样条插值函数模型对热解褐煤孔隙演化的研究[J]. 材料导报, 2020, 34(18): 18074-18080.
TENG Yingyue, HOU Xingcheng, BAI Xue, LIU Quansheng, LI Yi,WU Kan, ZHU Zhicheng. Study on the Pore Evolution of Pyrolysis Lignite via the Cubic Spline Interpolation Function Model Based on 1H-NMR Experimental Data. Materials Reports, 2020, 34(18): 18074-18080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070116  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18074
1 Wu Y J, Xia C L, Cai L P, et al. Journal of Colloid and Interface Science, 2018, 518, 41.
2 Thomas E R, Denisa H J, et al.The Journal of Physical Chemistry C, 2009, 113, 19335.
3 Cui J J, He W, Liao S J, et al. Materials Review A:Review Papers, 2009, 23 (7),82(in Chinese).
崔静洁, 何文, 廖世军, 等. 材料导报:综述篇, 2009, 23(7), 82.
4 Li X C, Kang Y L, Manouchehr H. Measurement, 2018,116,122.
5 Peng D, Dennis J S, Scott S A. Fuel, 2016, 171,29.
6 Zhou S X, Sheng W,Wang Z P, et al. Construction and Building Mate-rials, 2019, 208,144.
7 Yang Z, Qiao W M, Liang X Y. New Carbon Materials, 2017, 32(1),77.
8 Harmer J, Callcott T, Maeder M, et al. Fuel, 2001, 80(3),417.
9 Cai Y D, Liu D M, Pan Z J, et al. Fuel, 2013, 108, 292.
10 Liu W, Xing L.Nuclear magnetic resonance logging, Petroleum Industry Press, China, 2011(in Chinese).
刘卫, 邢立. 核磁共振录井,石油工业出版社, 2011.
11 Yao Y B, Liu D M, Xie S B. International Journal of Coal Geology,2014, 131 (2), 32.
12 Alexeev A D, Vasilenko T A, Ulyanova E V.Fuel, 1999, 78(6),635.
13 Li Hongyi,Li Ling,Zhao Di. Applied Mathematics and Computation, 2018, 335,112.
14 Tan B, Huang M, Zhu Q B,et al. Spectrochimica Acta Part B, 2017, 138,64.
15 Busan S,Othman M M,Musirin I, et al. European Transactions on Electrical Power, 2011, 31,439.
16 Tsai T L, Yang J C, Asce M,et al. Journal of Hydraulic Engineering, 2004, 130,580.
17 Yao Y B, Liu D M, Che Y, et al.Fuel, 2010, 89, 1371.
18 Teng Yingyue,Lian Shijun,Liu Quansheng, et al. Chinese Journal of Chemical Engineering, 2016, 24,803.
19 Sampath K H S M, Perera M S A, Perera P G, et al. Measurement, 2019, 135,47.
20 Arash T, Yu J L, Han Y N, et al. Fuel Processing Technology, 2012, 101,85.
21 Yang X J, Zhang C, Tan P, et al. Journal of Combustion Science and Technology, 2014, 20(5),453(in Chinese).
杨显军, 张成, 谭鹏,等. 燃烧科学与技术, 2014, 20(5),453.
22 Shi Y Y, Li S Y, Hu H Q. Journal of Analytical and Applied Pyrolysis, 2012, 95,75.
[1] 刘树和, 刘彬, 赵焱, 张兰, 于晓华, 李如燕, 姚耀春, 董鹏. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8): 8014-8019.
[2] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[3] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[4] 郝博, 唐一桐, 李雪霏, 赵文波. 金属有机框架衍生物的制备及催化性能的研究进展[J]. 材料导报, 2020, 34(11): 11035-11042.
[5] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[6] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[7] 王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
[8] 朱亚明, 赵春雷, 刘献, 赵雪飞, 高丽娟, 程俊霞. 煤沥青中甲苯可溶物的基础物性研究[J]. 材料导报, 2019, 33(2): 368-372.
[9] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[10] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[11] 刘泽伟, 闫思佳, 夏子皓, 田霖, 刘煜康, 王竟成, 胡建杭. 温度和CO2对热解成型生物质炭孔隙结构和表面分形维数的影响[J]. 材料导报, 2018, 32(17): 2925-2931.
[12] 李金灵, 屈撑囤, 朱世东, 范夏韵, 朱治辉. 含油污泥热解残渣特性及其资源化利用研究概述[J]. 材料导报, 2018, 32(17): 3023-3032.
[13] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[14] 张军战, 张海昇, 张颖, 贺辉. 聚硅氧烷转化制备硅氧碳多孔陶瓷的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 91-96.
[15] 李文超, 王英, 唐仁衡, 夏文明, 肖方明, 王华昆, 黄玲, 孙泰. 用于锂离子电池的高性能SiOx/C/石墨烯复合负极材料*[J]. 《材料导报》期刊社, 2017, 31(16): 16-20.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed