Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 91-96    https://doi.org/10.11896/j.issn.1005-023X.2017.019.013
  材料综述 |
聚硅氧烷转化制备硅氧碳多孔陶瓷的研究进展*
张军战, 张海昇, 张颖, 贺辉
西安建筑科技大学材料与矿资学院功能材料研究所,西安 710055
Research Developments in the Preparation of Silicon Oxycarbide Porous Ceramics via Pyrolytic Ceramization of Polysiloxanes
ZHANG Junzhan, ZHANG Haisheng, ZHANG Ying, HE Hui
Functional Materials Laboratory, College of Materials & Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 1817KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅氧碳多孔陶瓷耐高温,密度低,比强度高,比表面积大,热导率低,介电性能优良,应用前景广阔。聚合物前驱体转化法已成为颇具前景的陶瓷材料制取手段。文章在简要介绍聚硅氧烷的基础上,从聚硅氧烷热解前、热解过程中以及热解后不同阶段形成特定的孔结构出发,重点阐述了通过聚硅氧烷热解制备硅氧碳多孔陶瓷的工艺研究现状,并提出了亟待解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张军战
张海昇
张颖
贺辉
关键词:  聚硅氧烷  硅氧碳  多孔陶瓷  热解  成孔    
Abstract: Silicon oxycarbide porous ceramics have promising application due to its characteristics of high temperature resis-tance, low density, high specific strength, high specific surface area, low thermal conductivity as well as excellent dielectric properties. Pyrolytic ceramization of preceramic polymer precursors has a bright prospect in producing ceramics. Based on a brief introduction to polysiloxanes, this article reviews the research status of preparing silicon oxycarbide porous ceramics from polysiloxanes, with an emphasis on the specific pore structures formed before, during and after pyrolysis. It also discusses some emerging issues in the field.
Key words:  polysiloxane    silicon oxycarbide    porous ceramic    pyrolysis    porosification
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TQ174  
基金资助: *西安建筑科技大学人才科技基金项目(RC1705)
作者简介:  张军战:通讯作者,男,1972年生,博士,副教授,主要从事多孔陶瓷工艺、高温结构陶瓷研究 E-mail:xajzzhang@xauat.edu.cn
引用本文:    
张军战, 张海昇, 张颖, 贺辉. 聚硅氧烷转化制备硅氧碳多孔陶瓷的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 91-96.
ZHANG Junzhan, ZHANG Haisheng, ZHANG Ying, HE Hui. Research Developments in the Preparation of Silicon Oxycarbide Porous Ceramics via Pyrolytic Ceramization of Polysiloxanes. Materials Reports, 2017, 31(19): 91-96.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.013  或          http://www.mater-rep.com/CN/Y2017/V31/I19/91
1 Colombo P, Raj R. Preface[M]//Advances in polymer derived ceramics and composites. USA: the American Ceramic Society,2010.
2 Vakifahmetoglu C, Zeydanli D, Colombo P. Porous polymer derived ceramics[J]. Mater Sci Eng R: Rep,2017,106:1.
3 Adler P N. Overview of ARPA low-cost ceramic composites (LC3) program [C]//41st International Symposium of the Society for the Advancement of Material and Process Engineering and Exhibition.Covina,CA,1996.
4 Colombo P. Novel processing of silicon oxycarbide ceramic foams[J]. Adv Eng Mater,1999,1(3-4):203.
5 Kaspar J, Graczyk-Zajac M, Riedel R. Lithium insertion into carbon-rich SiOC ceramics: Influence of pyrolysis temperature on electrochemical properties[J].J Power Sources,2013,244(244):450.
6 Narisawa M, et al. Oxidation process of white Si-O-C(-H) ceramics with various hydrogen contents[J]. Scr Mater,2013,69(8):602.
7 Ma Q S, Chen Z H, Zheng W W, et al. Processing and characterization of particles reinforced Si O C composites via pyrolysis of polysiloxane with SiC or/and Al fillers[J]. Ceram Int,2005,31(8):1045.
8 Bergero L, Sglavo V M, Soraru G D. Processing and thermal shock resistance of a polymer-derived MoSi2 /SiCO ceramic composite[J]. J Am Ceram Soc,2005,88(11):3222.
9 Adam M, Wilhelm M, Grathwohl G. Polysiloxane derived hybrid ceramics with nanodispersed Pt[J]. Microp Mesop Mater,2011,151(11):195.
10 Su Q, Price L, Shao L, et al. Irradiation tolerance of amorphous SiOC/crystalline Fe composite[J]. Mater Lett,2015,155(2):1906.
11 Qiu L, et al. Thermal-conductivity studies of macro-porous polymer-derived SiOC ceramics[J]. Int J Thermophys,2014,35(1):76.
12 Pradeep V S, Ayana D G, Graczyk-Zajac M, et al. High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries[J]. Electrochim Acta,2015,157:41.
13 Narisawa M. Silicone resin applications for ceramic precursors and composites[J]. Materials,2010,3(6):3518.
14 Lu K. Porous and high surface area silicon oxycarbide-based mate-rials—A review[J]. Mater Sci Eng R:Rep,2015,97:23.
15 Ma Y, Ma Q S, Chen Z H. Present sate of prous cramics by peceramic plymer prolysis[J].J Mater Eng,2007(3):62(in Chinese).
马彦, 马青松, 陈朝辉. 先驱体转化法制备多孔陶瓷的发展现状[J]. 材料工程,2007(3):62.
16 Tian H. Fabrication and characterization of highly porous SiOC cera-mics from silicone resin[D].Changsha: University of Defense Tech-nology,2011(in Chinese).
田浩.硅树脂转化制备高孔隙率SiOC多孔陶瓷研究[D]. 长沙:国防科学技术大学,2011.
17 Colombo P. Engineering porosity in polymer-derived ceramics[J]. J Eur Ceram Soc,2008,28(7):1389.
18 Yan X, et al. Phase separation induced macroporous SiOC ceramics derived from polysiloxane[J].J Eur Ceram Soc,2015,35(35):443.
19 Strachota A, Cˇerný M, Chlup Z, et al. Foaming of polysiloxane re-sins with ethanol: A new route to pyrolytic macrocellular SiOC foams[J]. Ceram Int,2015,41(10):13561.
20 Nedunchezhian S, Sujith R, Kumar R. Processing and characterization of polymer precursor derived silicon oxycarbide ceramic foams and compacts[J]. J Adv Ceram,2013,2(4):318.
21 Cˇerný M, Chlup Z, Strachota A, et al. Si O C ceramic foams derived from polymethylphenylsiloxane precursor with starch as foaming agent[J]. J Eur Ceram Soc,2015,35(13):3427.
22 Rocha R M, Moura E A B, Bressiani A H A. SiOC ceramic foams synthesized from electron beam irradiated methylsilicone resin[J].J Mater Sci,2008,43(13):4466.
23 Liu H L, Zhong W W, Mao Y W. Preparation of SiOC foam cera-mics using polysiloxane[J]. Key Eng Mater,2008,368-372:920.
24 Pan J M, Cheng X N, Yan X H, et al. In situ synthesis and growth mechanism of SiC nanowires in SiCO porous ceramics [J]. Inorg Mater,2013,28(5):474(in Chinese).
潘建梅, 程晓农, 严学华, 等. 多孔SiCO陶瓷中SiC纳米线的原位合成及生长机理[J]. 无机材料学报,2013,28(5):474.
25 Colombo P, Modesti M. Silicon oxycarbide ceramic foams from a preceramic polymer[J]. J Am Ceram Soc,1999,82(3):573.
26 Colombo P, Modesti M. Silicon oxycarbide foams from a silicone preceramic polymer and polyurethane[J].J Sol-Gel Sci Technol,1999,14(1):103.
27 Naviroj M, Miller S M, Colombo P, et al. Directionally aligned macroporous SiOC via freeze casting of preceramic polymers[J]. J Eur Ceram Soc,2015,35(8):2225.
28 Zhang H, Nunes P D A, Wilhelm M, et al. Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting[J].J Eur Ceram Soc,2016,36(1):51.
29 Kim Y W, Park C B. Processing of microcellular preceramics using carbon dioxide[J]. Compos Sci Technol,2003,63(16):2371.
30 Takahashi T, et al. SiOC ceramic foams through melt foaming of a methylsilicone preceramic polymer[J].J Porous Mater,2003,10(2):113.
31 Kim Y W, Lee K H, Lee S H, et al. Fabrication of porous silicon oxycarbide ceramics by foaming polymer liquid and compression molding[J]. J Ceram Soc Jpn,2003,111(1299):863.
32 Liu H L, Hu M. Fabrication of SiOC ceramic foam with silicon resin and polyvinyl butyral[J]. Rare Met Mater Eng,2009,38(S2):369(in Chinese).
刘洪丽, 胡明. 以PVB为造孔剂采用硅树脂制备泡沫陶瓷[J]. 稀有金属材料与工程,2009,38(S2):369.
33 Adam M, Kocanis S, Fey T, et al. Hierarchically ordered foams derived from polysiloxanes with catalytically active coatings[J].J Eur Ceram Soc,2014,34(7):1715.
34 Park C B, Wang C M, Wang J, et al. Processing of porous silicon oxycarbide ceramics from extruded blends of polysiloxane and low-density polyethylene[J]. J Ceram Process Res,2009,10(2):238.
35 Kim Y W, Jin Y J, Chun Y S, et al. A simple pressing route to closed-cell microcellular ceramics[J]. Scr Mater,2005,53(8):921.
36 Colombo P, Bernardo E, Biasetto L. Novel microcellular ceramics from a silicone resin[J].J Am Ceram Soc,2004,87(1):152.
37 Shibuya M, Takahashi T, Koyama K. Microcellular ceramics by using silicone preceramic polymer and PMMA polymer sacrificial microbeads[J]. Compos Sci Technol,2007,67(1):119.
38 Kim S H, Kim Y W, Park C B. Effect of inert filler addition on pore size and porosity of closed-cell silicon oxycarbide foams[J]. J Mater Sci,2004,39(10):3513.
39 Eom J H, Kim Y W. Fabrication of silicon oxycarbide foams from extruded blends of polysiloxane, low-density polyethylene (LDPE), and polymer microbead[J]. Met Mater Int,2007,13(6):521.
40 Wang C, et al. Fabrication of cellular and microcellular ceramics with controllable open-cell content from polysiloxane-LDPE blends: I. Compounding and foaming[J]. J Mater Sci,2007,42(8):2854.
41 Kim Y W, Wang C, Park C B. Processing of porous silicon oxycarbide ceramics from extruded blends of polysiloxane and polymer microbead[J]. J Ceram Soc Jpn,2007,115(1343):419.
42 Vakifahmetoglu C, Balliana M, Colombo P. Ceramic foams and micro-beads from emulsions of a preceramic polymer[J]. J Eur Ceram Soc,2011,31(8):1481.
43 Dibandjo P, Graczyk-Zajac M, Riedel R, et al. Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics[J]. J Eur Ceram Soc,2012,32(10):2495.
44 Li J K, Lu K. Highly porous SiOC bulk ceramics with water vapor assisted pyrolysis[J]. J Am Ceram Soc,2015,98(8):2357.
45 Li J K, Lu K, Lin T, et al. Preparation of micro-/mesoporous SiOC bulk ceramics[J]. J Am Ceram Soc,2015,98(6):1753.
46 Duan L Q, Ma Q S, Chen Z H. Etching process of silicon oxycarbide from polysiloxane by chlorine[J]. Corros Sci,2015,94(87):237.
47 Yuan X Y, Jin H L, Yan X B, et al. Synthesis of ordered mesoporous silicon oxycarbide monoliths via preceramic polymer nanocas-ting[J]. Microp Mesop Mater,2012,147(1):252.
48 Duan L Q, Ma Q S, Chen Z H. Preparation and characterization of mesoporous silicon oxycarbide ceramics without free carbon from polysiloxane[J]. J Eur Ceram Soc,2013,33(4):841.
[1] 王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
[2] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[3] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[4] 朱亚明, 赵春雷, 刘献, 赵雪飞, 高丽娟, 程俊霞. 煤沥青中甲苯可溶物的基础物性研究[J]. 材料导报, 2019, 33(2): 368-372.
[5] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[6] 刘泽伟, 闫思佳, 夏子皓, 田霖, 刘煜康, 王竟成, 胡建杭. 温度和CO2对热解成型生物质炭孔隙结构和表面分形维数的影响[J]. 材料导报, 2018, 32(17): 2925-2931.
[7] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[8] 李金灵, 屈撑囤, 朱世东, 范夏韵, 朱治辉. 含油污泥热解残渣特性及其资源化利用研究概述[J]. 材料导报, 2018, 32(17): 3023-3032.
[9] 李文超, 王英, 唐仁衡, 夏文明, 肖方明, 王华昆, 黄玲, 孙泰. 用于锂离子电池的高性能SiOx/C/石墨烯复合负极材料*[J]. 《材料导报》期刊社, 2017, 31(16): 16-20.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed