Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22060249-7    https://doi.org/10.11896/cldb.22060249
  无机非金属及其复合材料 |
YSZ多孔陶瓷的孔隙结构特征及压缩强度研究
李萌, 艾建平*, 胡丽玲, 程丽红, 帅亚萍, 罗司玲, 周泽华, 陈智琴, 李文魁
江西科技师范大学材料与机电学院,江西省材料表面工程重点实验室,南昌 330038
Study on Pore Structure and Compressive Strength of Porous YSZ Ceramics
LI Meng, AI Jianping*, HU Liling, CHENG Lihong, SHUAI Yaping, LUO Siling, ZHOU Zehua, CHEN Zhiqin, LI Wenkui
Jiangxi Key Laboratory of Materials Surface Engineering, School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330038, China
下载:  全 文 ( PDF ) ( 13339KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以3%(摩尔分数)Y2O3稳定的ZrO2为原料、异丁烯与马来酸酐共聚物(Isobam-104)为分散剂和凝胶剂、十二烷基三甲基氯化铵(DTAC)为发泡剂,采用球磨发泡法制备出氧化钇稳定的氧化锆(YSZ)多孔陶瓷。研究浆料固含量对YSZ多孔陶瓷制品孔隙结构和压缩强度的影响规律,以及压缩失效机制变化特点。结果表明:在相近发泡率的条件下,固含量在30.5%~33.5%(体积分数)范围内小幅度增加时,所制备的YSZ多孔陶瓷的总孔隙率和平均孔胞尺寸逐渐减小,压缩强度增加;所制备的样品的总孔隙率为79.9%~88.4%,压缩强度为4.7~17.2 MPa,材料的压缩强度与总孔隙率之间的关系同Rice模型相符合;在压缩载荷作用下YSZ多孔陶瓷呈现伪塑性变形,失效破坏的主要形式为剪切破坏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李萌
艾建平
胡丽玲
程丽红
帅亚萍
罗司玲
周泽华
陈智琴
李文魁
关键词:  氧化锆  多孔陶瓷  球磨发泡法  压缩失效机制    
Abstract: The porous YSZ ceramics were prepared by ball milling foam method using 3% (in mole) Y2O3 stabilized ZrO2 as a raw material, Isobam-104 as a dispersing and gel agent, dodecyl trimethyl ammonium chloride (DTAC) as a foaming agent and foam stabilizing. The effect of solid content on the microstructure, compressive strength and compressive failure mechanism of the porous YSZ ceramics was investigated. This result shows that the total porosity and the average cell size of as-prepared porous YSZ ceramics gradually decrease and the compressive strength increases when the solid content slightly increases in the range of 30.5vol%—33.5vol% under the similar foaming rate. The total porosity of as-prepared porous YSZ sample was 79.9%—88.4% and the compressive strength was 4.7—17.2 MPa. The relationship between the compressive strength and total porosity was consistent with Rice model. Porous YSZ ceramics exhibit pseudo-plastic deformation under compressive load. And the main failure mode is shear failure.
Key words:  zirconia    porous ceramics    ball milling foaming    compression failure mechanism
发布日期:  2023-12-19
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51862009);江西省自然科学基金(20202BABL204016;20212BAB204019); 江西省教育厅科技类重点项目(GJJ190585);江西科技师范大学研究生创新专项资金(YC2021-X04)
通讯作者:  *艾建平,江西科技师范大学材料与机电学院校聘教授、硕士研究生导师。2010年6月从湖南大学材料科学与工程学院专业本科毕业,2015年中国科学院上海硅酸盐研究所材料学专业博士毕业后到江西科技师范大学工作至今。目前主要从事多孔材料功能化设计及其催化领域应用、3D打印和分形理论模拟等方面的研究工作。发表论文20余篇,包括Ceramics International、《稀有金属材料与工程》《陶瓷学报》《硅酸盐学报》等,已申请专利6项,获授权发明专利2项。ai861027@163.com;1020151005@jxstnu.edu.cn   
作者简介:  李萌,2020年9月毕业于咸阳师范学院,获得理学学士学位。现为江西科技师范大学材料与机电学院硕士研究生。目前主要从事YSZ多孔陶瓷和氮化铝流延成型工艺研究。
引用本文:    
李萌, 艾建平, 胡丽玲, 程丽红, 帅亚萍, 罗司玲, 周泽华, 陈智琴, 李文魁. YSZ多孔陶瓷的孔隙结构特征及压缩强度研究[J]. 材料导报, 2023, 37(24): 22060249-7.
LI Meng, AI Jianping, HU Liling, CHENG Lihong, SHUAI Yaping, LUO Siling, ZHOU Zehua, CHEN Zhiqin, LI Wenkui. Study on Pore Structure and Compressive Strength of Porous YSZ Ceramics. Materials Reports, 2023, 37(24): 22060249-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060249  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22060249
1 Li F, Liu J X, Huang X, et al. Journal of the Chinese Ceramic Society, 2018, 46(12), 1669 (in Chinese).
李飞, 刘吉轩, 黄晓, 等. 硅酸盐学报, 2018, 46(12), 1669.
2 Wang C A, Lang Y, Hu L F, et al. Journal of Ceramics, 2017, 38(3), 296 (in Chinese).
汪长安, 郎莹, 胡良发, 等. 陶瓷学报, 2017, 38(3), 296.
3 Wang Y, Jin L, Shi X L, et al. Journal of Medical Postgraduate, 2012, 25(6), 635 (in Chinese).
王阳, 金磊, 史小蕾, 等. 医学研究生学报, 2012, 25(6), 635.
4 Cable T L, Setlock J A, Farmer S C, et al. International Journal of Applied Ceramic Technology, 2011, 8(1), 1.
5 Ai J P, Hu L L, Su K Y, et al. Journal of Jiangxi Science & Technology Normal University, 2019(6), 17 (in Chinese).
艾建平, 胡丽玲, 苏开禹, 等. 江西科技师范大学学报, 2019(6), 17.
6 Zou J Z, Xiong H W, Huang Y J, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(8), 2059 (in Chinese).
邹金住, 熊慧文, 黄玉娟, 等. 中国有色金属学报, 2021, 31(8), 2059.
7 Dong Y, Wang C A, Zhou J, et al. Journal of the European Ceramic Society, 2012, 32(10), 2213.
8 Dong Y, Wang C A, Zhou J. Journal of Materials Science, 2012, 47(17), 6326.
9 Pia G, Casnedi L, Sanna U. Ceramics International, 2016, 42(5), 5802.
10 Yu H B, Liang S S, Li J. et al. Materials Reports, 2022, 36(8), 1 (in Chinese).
于海博, 梁帅帅, 李疆, 等. 材料导报, 2022, 36(8), 1.
11 Feng X, Li W F, Guo H S, et al. Journal of Ceramics, 2022, 43(2), 186 (in Chinese).
冯鑫, 李文凤, 郭会师, 等. 陶瓷学报, 2022, 43(2), 186.
12 Dong Y F, Wang X Y, Li Z H, et al. Ceramics, 2007(7), 50 (in Chinese).
董毅峰, 王雪瑶, 李志宏, 等. 陶瓷, 2007(7), 50.
13 Yuang Q, Tan H, Yang T W, et al. Bulletin of the Chinese Ceramic So-ciety, 2021, 40(8), 2687 (in Chinese).
袁绮, 谭划, 杨廷旺, 等. 硅酸盐通报, 2021, 40(8), 2687.
14 Wang S W, Jin Z Z, Huang L R. Bulletin of the Chinese Ceramic Society, 2006(4), 124(in Chinese).
王圣威, 金宗哲, 黄丽容. 硅酸盐通报, 2006(4), 124.
15 Jun I K, Koh Y H, Kim H E. Materials Letters, 2006, 60(7), 878.
16 Hu L F, Wang C A, Sun C C, et al. Aerospace Material Technology, 2010, 40(2), 55 (in Chinese).
胡良发, 汪长安, 孙陈诚, 等. 宇航材料工艺, 2010, 40(2), 55.
17 Hu L Y, Zhang Y M, Zhang S M, et al. Materials Letters, 2012, 82, 152.
18 Li C W, Deng N N, Wang C A, et al. Journal of the Chinese Ceramic Society, 2019, 47(9), 1214 (in Chinese).
李翠伟, 邓娜娜, 汪长安, 等. 硅酸盐学报, 2019, 47(9), 1214.
19 Tang X Y, Zhang Z J, Yang J L, et al. Journal of the Chinese Ceramic Society, 2018, 46(6), 772 (in Chinese).
唐欣悦, 张在娟, 杨金龙, 等. 硅酸盐学报, 2018, 46(6), 772.
20 Wen J B, Niu M, Wang H J, et al. Journal of the Chinese Ceramic Society, 2019, 47(9), 1198 (in Chinese).
温江波, 牛敏, 王红洁, 等. 硅酸盐学报, 2019, 47(9), 1198.
21 Hao B L, Chen S L, Wang C A, et al. Journal of the Chinese Ceramic Society, 2019, 47(9), 1242 (in Chinese).
郝边磊, 陈仕乐, 汪长安, 等. 硅酸盐学报, 2019, 47(9), 1242.
22 Li L Y, Du H Y, Wu J Y, et al. Journal of the Chinese Ceramic Society, 2019, 47(9), 1191 (in Chinese).
李玲玉, 杜海燕, 武劲宇, 等. 硅酸盐学报, 2019, 47(9), 1191.
23 Xu J F, Liu C J. Foshan ceramic, 2011, 21(10), 25 (in Chinese).
余剑峰, 刘春江. 佛山陶瓷, 2011, 21(10), 25.
24 Yin L Y, Zhou X G, Yu J S, et al. Journal of Porous Materials, 2015, 22(5), 1357.
25 Wang H, Li C W, Li H, et al. Journal of the Chinese Ceramic Society, 2020, 48(6), 824 (in Chinese).
王涵, 李翠伟, 李昊, 等. 硅酸盐学报, 2020, 48(6), 824.
26 Kim I J, Park J G, Han Y H, et al. Journal of the Korean Ceramic Society, 2019, 56(3), 211.
27 Gonzenbach U T, Studart A R, Tervoort E, et al. Angewandte Chemie International Edition, 2006, 45(21), 3526.
28 Zhao J. Ceramic foams fabricated from particle-stabilized foams with surfactant as hydrophobic modifier. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2018 (in Chinese).
赵瑾. 表面活性剂疏水修饰陶瓷颗粒制备泡沫陶瓷. 博士学位论文, 中国科学院大学, 2018.
29 Wang S W. Journal of Inorganic Materials, 2022(8), 809 (in Chinese).
王士维. 无机材料学报, 2022(8), 809.
30 Zhao J, Shi M S, Wang S W, et al. Physicochemical and Engineering Aspects, 2018, 537, 210.
31 Du Z P, Yao D X, Xia Y F, et al. Journal of the American Ceramic Society, 2019, 102(11), 6827.
32 Xi J J, Mei X, Li F, et al. Industrial Technology & Vocational Education, 2020, 18(4), 73 (in Chinese).
席晶晶, 梅啸, 李飞. 工业技术与职业教育, 2020, 18(4), 73.
33 Wu W H, Zhang H J, Zhang S W, et al. Journal of the Chinese Ceramic Society, 2020, 48(9), 1359 (in Chinese).
吴文浩, 张海军, 张少伟. 硅酸盐学报, 2020, 48(9), 1359.
34 Huo W L, Zhang X Y, Chen Y G, et al. Journal of the American Ceramic Society, 2016, 99(11), 3512.
35 Meng X, Xu J, Zhu J, et al. Journal of Materials Science, 2020, 55(31), 15106.
36 Du Z P, Yao D X, Xia Y F, et al. Ceramics International, 2020, 46(9), 12942.
37 Wang Q, Xi H L, Zuo Y J. Journal of Chemical Industry & Engineering, 2007(2), 25 (in Chinese).
王琦, 习海玲, 左言军. 化学工业与工程技术, 2007(2), 25.
38 Rand P B, Kraynik A M. Society of Petroleum Engineers Journal, 1983, 23(1), 152.
39 Chuanuwatanakul C, Tallon C, Dunstan D E, et al. Soft Matter, 2011, 7(24), 11464.
40 Wu Z, Sun L C, Pan J J, et al. Journal of the American Ceramic Society, 2018, 101(3), 1042.
41 Lian C, Zhuge Y, Beecham S. Construction and Building Materials, 2011, 25(11), 4294.
42 Wang Q, Chen Q, Zhu J, et al. Materials Chemistry and Physics, 2008, 109(2), 488.
43 Ryshkewitch E. Journal of the American Ceramic Society, 1953, 36(2), 65.
44 Savchenko N, Sevostyanova I, Sablina T, et al. American Institute of Physics, 2014, 1623(1), 547.
45 Lang Y. Preparation and properties of fiber-reinforced porous YSZ ceramics. Ph. D. Thesis, Tsinghua University, China, 2014 (in Chinese).
郎莹. 纤维增强多孔 YSZ 陶瓷材料的制备和性能研究. 博士学位论文, 清华大学, 2014.
46 Ai J P, Zhou G H, Wang S W, et al. Ceramics International, 2014, 40, 835.
47 Wu L H, Li C W, Wang C A, et al. International Journal of Applied Ceramic Technology, 2020, 17, 2104.
48 Sun J J, Hu Z J, Li J N, et al. Ceramics International, 2014, 40(8), 11787.
49 Jun I K, Koh Y H, Song J H, et al. Materials Letters, 2006, 60(20), 2507.
[1] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[2] 周婧, 樊云光, 卢林, 段国林, 孙文彬. 直写成型氧化锆生物陶瓷的制备及性能研究[J]. 材料导报, 2023, 37(17): 22020100-6.
[3] 于海博, 梁帅帅, 李疆, 祁斌. 氧化锆多孔陶瓷制备方法研究进展[J]. 材料导报, 2023, 37(13): 21080217-10.
[4] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[5] 余明先, 张景贤. 造孔剂法制备硅藻土基多孔陶瓷及其性能研究[J]. 材料导报, 2022, 36(Z1): 21070121-5.
[6] 王斌, 孙顺平, 王洪金, 李小平, 雷卫宁. 电弧熔覆ZrO2颗粒增韧对硅化钼涂层的组织及力学性能的影响[J]. 材料导报, 2022, 36(13): 21040249-6.
[7] 王世界, 尹艺程, 邱鑫, 康国卫, 刘新红, 贾全利, 张少伟. 超高温多孔陶瓷的制备、性能及应用研究进展[J]. 材料导报, 2022, 36(12): 20100045-8.
[8] 周强, 田业冰, 于宏林, 范增华, 钱乘, 孙志光. 超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性[J]. 材料导报, 2021, 35(z2): 97-100.
[9] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[10] 李强, 姜勇刚, 冯军宗, 李良军, 冯坚. 水热-热静压工艺制备陶瓷材料的研究进展[J]. 材料导报, 2020, 34(Z2): 123-127.
[11] 杨振飞, 史鹏, 敖冰云. 锆合金中的氢化物脱附行为研究进展[J]. 材料导报, 2020, 34(5): 5102-5108.
[12] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[13] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[14] 刘婷, 陈伟东, 鞠红民, 闫淑芳, 张宇欣, 马文. 聚丙烯酰胺凝胶法制备氧化锆纳米粉体的热分解过程和相转变行为[J]. 材料导报, 2019, 33(14): 2315-2318.
[15] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed