Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 20120004-7    https://doi.org/10.11896/cldb.20120004
  无机非金属及其复合材料 |
直写成型制备多孔陶瓷技术研究进展
周振豪, 姜勇刚*, 冯军宗, 李良军, 冯坚
国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
Direct Ink Writing of Porous Ceramics: a Review
ZHOU Zhenhao, JIANG Yonggang*, FENG Junzong, LI Liangjun, FENG Jian
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073,China
下载:  全 文 ( PDF ) ( 30677KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔陶瓷具有耐高温、可控孔结构、高孔隙率、化学稳定性和生物惰性等特点,是应用于支柱、生物、催化和电气等领域的理想材料。传统多孔陶瓷的制造方法主要有颗粒堆积、添加造孔剂、发泡、溶胶-凝胶等。近年来,随着增材制造技术的发展,直写成型技术因其简单的设备构造和良好的浆料兼容性,被广泛应用于制造复杂结构和图案的多孔陶瓷。
本文综述了直写成型多孔陶瓷的技术方法及其在各领域的应用,详细分析了直写成型技术制备多孔陶瓷材料的优劣势,提出了直写成型制备多孔陶瓷所面临的挑战,并对直写成型制备多孔陶瓷技术发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周振豪
姜勇刚
冯军宗
李良军
冯坚
关键词:  多孔陶瓷  3D打印  直写成型技术    
Abstract: Porous ceramics have the characteristics of high-temperature resistance, controllable pore structure, high porosity, chemical stability, and biological inertness, which are ideal materials for applications in the areas of strut, biomedicine, catalysis, and electricity. Conventional manufacturing technologies of porous ceramics mainly include particle accumulation, adding pore formers, foaming, and sol-gel. In recent years, with the development of additive manufacturing technology, direct ink writing has been widely applied to fabricate porous ceramics with complex architectures and geometries due to its simple setups and fine ink compatibility.
This review introduces the different strategies for achieving the direct-ink-writing assembly of porous ceramics and their applications in various fields. Furthermore, the advantages and disadvantages of the direct-ink-write technology for preparing porous ceramic materials are highlighted in detail. This review is concluded with the current challenges and an outlook for the development of direct-ink-writing of porous ceramics.
Key words:  porous ceramic    3D printing    direct-ink-writing
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TQ174  
基金资助: 湖南省自然科学基金(2018JJ2469)
通讯作者:  * 姜勇刚,国防科技大学空天科学学院副研究员、硕士研究生导师。2001年7月本科毕业于青岛大学化工系,2003年12月和2007年12月在国防科技大学材料科学与工程专业分别取得硕士和博士学位,2016—2017年在英国牛津大学材料系访学,主要从事纳米气凝胶隔热复合材料研究。近年来,发表学术论文30余篇,获国家授权发明专利20余项。jygemail@nudt.edu.cn   
作者简介:  周振豪,2019年6月毕业于中南大学,获得工学学士学位。现为国防科技大学空天科学学院硕士研究生,主要从事纳米粉末基隔热复合材料的研究。
引用本文:    
周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
ZHOU Zhenhao, JIANG Yonggang, FENG Junzong, LI Liangjun, FENG Jian. Direct Ink Writing of Porous Ceramics: a Review. Materials Reports, 2023, 37(4): 20120004-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120004  或          http://www.mater-rep.com/CN/Y2023/V37/I4/20120004
1 Jiang P Q, Li S Z. Advanced Ceramics, 2003, 24(2), 37 (in Chinese).
江培秋, 李素珍. 现代技术陶瓷, 2003, 24(2), 37.
2 Fukushima M, Colombo P, Yoshizawa Y. Processing and morphology control of porous ceramics, Wiley Blackwell, USA, 2016 pp.276.
3 Xiong X, Liu H, Ma Y, et al. Refractories, 2019, 53(5), 336 (in Chinese).
熊洵, 刘浩, 马妍, 等. 耐火材料, 2019, 53(5), 336.
4 He J F, Zhang H J, Ge S T, et al. Refractories, 2020, 54(2), 163 (in Chinese).
何江锋, 张海军, 葛胜涛, 等. 耐火材料, 2020, 54(2), 163.
5 Jiao Y F, Wu G P, Xie F M, et al. Jiangsu Ceramics, 2020, 53(1), 23 (in Chinese).
焦永峰, 邬国平, 谢方民, 等. 江苏陶瓷, 2020, 53(1), 23.
6 Liu W, Li N, Zhou B, et al. Journal of Mechanical Engineering, 2019, 55(20), 128 (in Chinese).
刘伟, 李能, 周标, 等. 机械工程学报, 2019, 55(20), 128.
7 Jin H, Yang Z, Cai D, et al. Materials & Design, 2020, 185, 108220.
8 Maurath J, Willenbacher N. Journal of the European Ceramic Society, 2017, 37(15), 4833.
9 Zhu Q, Dong X, Hu J, et al. Ceramics International, 2020, 46(5), 6978.
10 Li X, Gao M, Jiang Y. Ceramics International, 2016, 42(10), 12531.
11 Jin H, Jia D, Yang Z, et al. Ceramics International, 2020, 46(10), 15709.
12 Elsayed H, Chmielarz A, Potoczek M, et al. Additive Manufacturing, 2019, 28, 365.
13 Shao H, Ke X, Liu A, et al. Biofabrication, 2017, 9(2), 025003.
14 Shao H, Yang X, He Y, et al. Biofabrication, 2015, 7(3), 035010.
15 Elsayed H, Rebesan P, Crovace M C, et al. Journal of the American Ceramic Society, 2019, 102(3), 1010.
16 Elsayed H, Colombo P, Bernardo E. Journal of the European Ceramic Society, 2017, 37(13), 4187.
17 Elsayed H, Picicco M, Dasan A, et al. Ceramics International, 2019, 45(11), 13740.
18 Elsayed H, Secco M, Zorzi F, et al. Materials, 2019, 12(23), 3970.
19 Elsayed H, Gardin C, Ferroni L, et al. Advanced Engineering Materials, 2019, 21(6), 1800900.
20 Elsayed H, Sinico M, Secco M, et al. Journal of the European Ceramic Society, 2017, 37(4), 1757.
21 Zocca A, Franchin G, Elsayed H, et al. Journal of the American Ceramic Society, 2016, 99(6), 1960.
22 Li Y Y, Li L T, Li B. Modern Physics Letters B, 2015, 29(14), 1550066.
23 Tang D, Hao L, Li Y, et al. Journal of Alloys and Compounds, 2020, 814, 152275.
24 Martinez-Vazquez F J, Perera F H, Miranda P, et al. Acta Biomaterialia, 2010, 6(11), 4361.
25 Wang J Y, Wang C J, Jin K, et al. Materials Science and Engineering: C, 2019, 105, 195.
26 Dasan A, Elsayed H, Kraxner J, et al. Journal of the European Ceramic Society, 2019, 39(14), 4445.
27 Miranda P, Pajares A, Saiz E, et al. Journal of Biomedical Materials Research, 2008, 85(1), 218.
28 Pan Y, Zhu P, Wang R, et al. Ceramics International, 2019, 45(12), 15230.
29 Zhang X, Huo W, Liu J, et al. Journal of the European Ceramic Society, 2020, 40(3), 930.
30 Ren B, Liu J, Wang Y, et al. Journal of the American Ceramic Society, 2019, 102(11), 6498.
31 Minas C, Carnelli D, Tervoort E, et al. Advanced Materials, 2016, 28(45), 9993.
32 Jin H, Yang Z, Zhong J, et al. Journal of the European Ceramic Society, 2019, 39(15), 4680.
33 Román-Manso B, Moyano J J, Pérez-Coll D, et al. Journal of the European Ceramic Society, 2018, 38(5), 2265.
34 Pierin G, Grotta C, Colombo P, et al. Journal of the European Ceramic Society, 2016, 36(7), 1589.
[1] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[2] 程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
[3] 余明先, 张景贤. 造孔剂法制备硅藻土基多孔陶瓷及其性能研究[J]. 材料导报, 2022, 36(Z1): 21070121-5.
[4] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[5] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[6] 刘琛, 李勇, 周文, 吴宜勇, 王岩, 吴跃民, 王芳, 琚丹丹, 闫继宏. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 22050122-7.
[7] 李俊生, 李端, 李学超, 高世涛, 王衍飞, 万帆, 刘荣军. 3D打印天线罩技术研究进展[J]. 材料导报, 2022, 36(22): 22050328-10.
[8] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[9] 张蕾, 李博, 高阳. 压阻式柔性应变传感器研究进展[J]. 材料导报, 2022, 36(19): 20120243-11.
[10] 许万卫, 白雪, 马健, 刘帅. 超声检测在金属3D打印中的应用研究进展[J]. 材料导报, 2022, 36(18): 21030217-10.
[11] 张科, 叶锦明, 刘享华. 光固化3D打印在复杂裂隙岩体研究中的探索[J]. 材料导报, 2022, 36(17): 20090297-6.
[12] 秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17): 21010246-9.
[13] 刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
[14] 王晓晶, 涂龙, 罗晓亮, 王浩旭, 胡振峰, 梁秀兵. 聚合物基材料4D打印研究进展[J]. 材料导报, 2022, 36(14): 20100265-15.
[15] 王世界, 尹艺程, 邱鑫, 康国卫, 刘新红, 贾全利, 张少伟. 超高温多孔陶瓷的制备、性能及应用研究进展[J]. 材料导报, 2022, 36(12): 20100045-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed