Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20100045-8    https://doi.org/10.11896/cldb.20100045
  无机非金属及其复合材料 |
超高温多孔陶瓷的制备、性能及应用研究进展
王世界1, 尹艺程1, 邱鑫1, 康国卫1, 刘新红1, 贾全利1, 张少伟2
1 郑州大学河南省高温功能材料重点实验室, 郑州 450052
2 埃克塞特大学数学与物理学院,埃克塞特 EX4 4QF
Preparation, Properties and Application of Ultra-high Temperature Porous Ceramics: a Review
WANG Shijie1, YIN Yicheng1, QIU Xin1, KANG Guowei1, LIU Xinhong1, JIA Quanli1, ZHANG Shaowei2
1 Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450052, China
2 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
下载:  全 文 ( PDF ) ( 27162KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高温多孔陶瓷既有超高温陶瓷耐高温、抗氧化/烧蚀、无固态相变的优异特性,又有多孔陶瓷体积密度小、导热系数低的优点,有望成为极端环境下高温隔热、高温腐蚀性气体过滤及高温太阳能吸收等应用的候选材料。按成孔原理的不同,超高温多孔陶瓷的制备方法有部分烧结法、模板复制法、牺牲模板法、冷冻浇注法、直接发泡法和溶胶-凝胶法。用部分烧结法制得的超高温多孔陶瓷力学性能优异,但气孔率低且孔结构难以控制;模板复制法制得的陶瓷材料气孔率高,但其气孔结构取决于模板的气孔结构,可设计性较差;牺牲模板法制得的陶瓷材料气孔大小和形貌可控,但气孔分布均匀性差;冷冻浇注法具有高效、低成本等优点,制得的陶瓷材料气孔率高,但用有机溶剂为冷冻介质时,对环境有危害;直接发泡法制得的陶瓷材料气孔率高,孔结构缺陷少,但发泡过程难以控制,对工艺要求较高;溶胶-凝胶法制备的陶瓷材料气孔率高,导热系数低,但强度低,且制备成本较高。本文介绍了超高温多孔陶瓷材料的制备方法、性能及应用前景,总结了超高温多孔陶瓷制备方法的优缺点,分析了超高温多孔陶瓷材料面临的问题并展望其前景,以期为制备超高温多孔陶瓷材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王世界
尹艺程
邱鑫
康国卫
刘新红
贾全利
张少伟
关键词:  超高温陶瓷  多孔陶瓷  制备方法  ZrB2-SiC    
Abstract: Ultra-high temperature porous ceramics (UHTCs) exhibited a fascinating combination of properties of porous ceramics including high porosity, high specific surface area, as well as beyond satisfactory physicochemical and high-temperature stability and properties of UHTCs including good high temperature volume stability, outstanding oxidation/ablation resistance, which make it as an appropriate candidate for applications under severe environments, such as high-temperature thermal insulation components, high-temperature hostile gases filtration, high-temperature solar absorptions, etc. Ultra-high temperature porous ceramics have been fabricated by partial sintering, replica, sacrificial template, freeze casting, direct foaming and sol-gel method, based on the different pore-forming mechanism. The ultra-high temperature porous ceramics prepared by partial sintering method had excellent mechanical properties, but its porosity was low, and pore structure was non-uniform. Because the pore morphology of porous ceramics prepared by replica method was inherited form the pore structure of templates, the porous ceramics had high porosity and poor designability for pore structure. The pore size and microstructure of ceramic materials prepared by sacrificial template method can be tailored, but porous ceramics had non-uniform pore size distribution. Porous ceramics prepared by freeze casting, which had emerged as a high-efficiency, low-cost and high porosity; however, its fabricating process was not environmentally friendly due to organic solvents were used as freezing vehicles. The porous ceramics prepared by direct foaming method possessed high porosity and homogeneous pore structure, but the foaming process in a tailored manner was difficult. The ceramic materials prepared by sol-gel method had high porosity, low thermal conductivity, low strength and highcost. In this paper, the preparation, properties and future application of ultra-high temperature porous ceramics were comprehensively reviewed. The advantages and disadvantages of the fabrication of porous ceramics were summarized. The problems and outlook of ultra-high temperature porous ceramic materials were proposed, which aimed to provide guidance for the preparation of ultra-high temperature porous ceramic materials.
Key words:  ultra-high temperature ceramic    porous ceramic    fabrication process    ZrB2-SiC
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TB332  
  TB35  
基金资助: 国家自然科学基金(52172029;52172031) ;河南省自然科学基金(202300410473)
通讯作者:  jiaquanli@zzu.edu.cn   
作者简介:  王世界,2016年6月毕业于河南城建学院,获得工学学士学位。现为郑州大学材料科学与工程学院博士研究生,在张少伟教授和贾全利教授的指导下进行研究。目前主要研究领域为超高温陶瓷材料的制备及性能研究。
张少伟,英国埃克赛特大学数学物理与工程学院教授、国家千人计划专家、博士研究生导师。1984年7月本科毕业于武汉钢铁学院,1996年博士毕业于日本名古屋工业大学,1997—2012在英国谢菲尔德大学担任博士后研究员、讲师、副教授,2012年至今为英国埃克赛特大学数学物理与工程学院首席教授。省部共建耐火材料与冶金国家重点实验室主任、英国皇家化学学会会士、英国皇家工业协会会士、Refractory Manual特刊主编、Interceram、Advances in Applied Ceramics等期刊编委。主要从事纳米材料的低温绿色合成、高温陶瓷、氧化物-非氧化物复合材料、新型防弹材料、纳米催化材料及生物材料等领域的研究。获英国国家自然科学基金、中国国家自然科学基金、973计划前期研究专项及武汉市“黄鹤英才计划”等项目30余项,在ACS Nano、Nano Energy、Angewandte Chemie International Edition、Applied Catalysis B:Environmental等国际知名期刊上发表学术论文300余篇,其中论文被SCI检索200余篇,论文被SCI引用超过2 600次;授权中国发明专利10余项。
引用本文:    
王世界, 尹艺程, 邱鑫, 康国卫, 刘新红, 贾全利, 张少伟. 超高温多孔陶瓷的制备、性能及应用研究进展[J]. 材料导报, 2022, 36(12): 20100045-8.
WANG Shijie, YIN Yicheng, QIU Xin, KANG Guowei, LIU Xinhong, JIA Quanli, ZHANG Shaowei. Preparation, Properties and Application of Ultra-high Temperature Porous Ceramics: a Review. Materials Reports, 2022, 36(12): 20100045-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100045  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20100045
1 Gollaa B R, Mukhopadhyay A, Basu B, et al. Progress in Materials Science, 2020, 111, 100651.
2 Simonenkoa E P, Simonenko N P, Sevastyanov V G, et al. Russian Journal of Inorganic Chemistry, 2018, 63, 1772.
3 Arai Y, Inoue R, Goto K, et al. Ceramics International, 2019, 45, 14481.
4 Tang S, Hu C. Journal of Materials Science & Technology, 2017, 33, 117.
5 Ma B X, Guo E J, Wang L P, et al. Materials Reports A: Review papers, 2013, 3, 49 (in Chinese).
马宝霞, 郭二军, 王丽萍. 材料导报:综述篇, 2013, 27(2), 49.
6 Zhang G J, Ni D W, Zou J. Journal of the European Ceramic Society, 2018, 32, 371.
7 Li F, Liu J X, Huang X, et al. Journal of the Chinses Ceramic Society, 2018, 46 (12), 1669 (in Chinese).
李飞, 刘吉轩, 黄晓, 等. 硅酸盐学报, 2018, 46 (12), 1669.
8 Studart A R, Gonzenbach U T, Tervoort E, et al. Journal of the American Ceramic Society, 2006, 89, 1771.
9 Zhou Y C, Xiang H M, Feng Z H, et al. Journal of Materials Science & Technology, 2015, 31, 285.
10 Yada K, Masaoka H, Shoji Y, et al. Journal of Electron Microscopy Technique, 1989,12, 252.
11 Chen Y F, Hong C Q, Hu C L, et al. Advanced Ceramics, 2017, 38 (5), 311 (in Chinese).
陈玉峰, 洪长青, 胡成龙, 等. 现代技术陶瓷, 2017, 38 (5), 311.
12 Nguyen V H, Delbari S A, Ahmadi Z, et al. Ceramics International, 2020, 46, 25415.
13 Nayebi B, Asl M S, Kakroudi M G, et al. Ceramics International, 2016, 42, 17009.
14 Jin X X, Dong L M, Xu H Y, et al. Ceramics International, 2016, 42, 9051.
15 Jin X X, Zhang X H, Han J C, et al. Materials Science & Engineering A, 2013, 588, 175.
16 Jin X X, Dong L M, Li Q, et al. Ceramics International, 2016, 42, 13309.
17 Yuan H P, Li J G, Shen Q, et al. International Journal of Refractory Metals and Hard Materials, 2012, 34, 3.
18 Yuan H P, Li J G, Shen Q, et al. International Journal of Refractory Metals and Hard Materials, 2013, 36, 225.
19 Chen H, Xiang H M, Dai F Z, et al. Journal of Materials Science & Technology, 2019, 35, 2778.
20 Yan N N, Fu Q G, Zhang Y Y, et al. Ceramics International, 2020, 46, 19609.
21 Medri V, Mazzocchi M, Bellosi A. International Journal of Applied Ceramic Technology, 2011, 8, 815.
22 Rambo C R, Cao J, Rusina O, et al. Carbon, 2005, 43, 1174.
23 Jiang J M, Wang S, Li W, et al. Journal of Alloys and Compounds, 2017, 695, 2295.
24 Wu H B, Yin J, Li Y S, et al. Ceramics International, 2016, 42, 1573.
25 Sani E, Mercatelli L, Sans J L, et al. Optical Materials, 2013, 36, 163.
26 Du J C, Zhang X H, Hong C Q, et al. Ceramics International, 2013, 39, 953.
27 Landi E, Sciti D, Melandri C, et al. Journal of the European Ceramic Society, 2013, 33, 1599.
28 Qi Y S, Jiang K, Zhou C L, et al. Journal of the European Ceramic Society, 2021, 41, 2239.
29 Wu H B, Yin J, Liu X J, et al. Ceramics International, 2014, 40, 6325.
30 Li F, Kang Z, Huang X, et al. Journal of the European Ceramic Society, 2014, 34, 3513.
31 Li F, Liang M S, Ma X F, et al. Journal of Porous Materials, 2015, 22, 493.
32 Li F, Huang X. Journal of the European Ceramic Society, 2018, 38, 1103.
33 Li F, Wang X G, Huang X, et al. Journal of the European Ceramic Society, 2018, 38, 4806.
34 Yang J F, Zhang G J, Ohji T, et al. Journal of Materials Research, 2001, 16, 1916.
35 Lam D C C, Lange F F, Evans A G. Journal of the American Ceramic Society, 1994, 77, 2113.
36 Hardy D, Green D J. Journal of the European Ceramic Society, 1995, 15, 769.
37 Pu X P, Liu X J, Qiu F G, et al. Journal of the American Ceramic Society, 2004, 87, 1392.
38 Ota T, Takahashi M, Hibi T, et al. Journal of the American Ceramic Society, 1995, 78, 3409.
39 Liang X, Li Y W, Wang Q H, et al. Ceramics International, 2017, 43, 11197.
40 Qian J, Wang J, Qiao G, et al. Materials Science & Engineering A, 2004, 371, 229.
41 Zollfrank C, Kladny R, Sieber H, et al. Journal of the European Ceramic Society, 2004, 24, 479.
42 Kan X Q, Ding J, Yu C, et al. Materials Reports B: Research Papers, 2018, 32 (5), 1602 (in Chinese).
阚小清, 丁军, 余超, 等. 材料导报:研究篇, 2018, 32 (5), 1602.
43 Sun B, Fan T, Zhang D, et al. Carbon, 2004, 42, 177.
44 Lyckfeldt O, Ferreira J M F. Journal of the European Ceramic Society, 1998, 18, 131.
45 Fukasawa T, Deng Z Y, Ando M, et al. Journal of the American Ceramic Society, 1992, 85, 2151.
46 Fukasawa T, Ando M, Ohji T, et al. Journal of the American Ceramic Society, 2001, 84, 230.
47 Wang Y, Liu Q, Zhang B, et al. Ceramics International, 2020,
48 Deville S. Scripta Materialia, 2018, 147, 119.
49 Deng X G, Wang J K, Du S, et al. Materials Report A: Review Papers, 2015(5) , 109 (in Chinese).
邓先功, 王军凯, 杜爽, 等. 材料导报:综述篇, 2015(5), 109.
50 Weber K, Tomandl G. Ceramic Forum International, 1998, 75, 22.
51 Leventis N, Sadekar A, Chandrasekaran N, et al. Chemistry of Materials, 2010, 22, 2790.
52 Leventis N, Chandrasekaran N, Sadekar A G, et al. Journal of Materials Chemistry, 2010, 20, 7456.
53 Kido Y, Hasegawa G, Kanamori K, et al. Journal of Materials Chemistry A, 2014, 2, 745.
54 Li F, Bao We C, Wei X F, et al. Ceramics International, 2019, 45, 9313.
55 Bogaerts W F, Lampert C M. Journal of Materials Science, 1983, 18, 2847.
56 Lampert C M. Solar & Wind Technology, 1987, 4, 347.
57 Karni J, Kribus A, Rubin R, et al. Journal Solar Energy Engineering, 1997, 120, 85.
58 Agrafiotis C C, Mavroidis I, Kostandopoulos A G, et al. Solar Energy Materials and Solar Cells, 2007, 91, 474.
59 Sani E, Mercatelli L, Francini F, et al. Scripta Materialia, 2011, 65, 775.
60 Sani E, Mercatelli L, Fontani D, et al. Journal of Renewable and Sustainable Energy, 2011, 3, 063107.
61 Sani E, Mercatelli L, Sansoni P, et al. Journal of Renewable & Sustai-nable Energy, 2012, 4, 33104.
[1] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[2] 余明先, 张景贤. 造孔剂法制备硅藻土基多孔陶瓷及其性能研究[J]. 材料导报, 2022, 36(Z1): 21070121-5.
[3] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[4] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[5] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[6] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[7] 董宏伟, 张冠星, 董显, 薛行雁, 沈元勋. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(z2): 341-345.
[8] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[9] 王浩, 宗楠, 陈中正, 薄勇, 彭钦军. 富勒烯制备与提纯方法研究进展[J]. 材料导报, 2021, 35(Z1): 71-77.
[10] 马力, 赵赫, 昝宇宁, 肖伯律, 王东, 王全兆, 王文广. 耐热铝合金及其复合材料的制备、应用和强化机制[J]. 材料导报, 2021, 35(Z1): 414-420.
[11] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[12] 申冰磊, 王中跃, 于春雷, 王欣, 王世凯, 胡丽丽, 韦玮. 稀土掺杂钇铝石榴石晶体激光光纤的研究进展[J]. 材料导报, 2021, 35(9): 9123-9132.
[13] 郭启龙, 王晓庆, 王璟, 裴军军, 李俊国, 张联盟. 原位反应烧结Zr2Al4C5化合物增韧ZrB2-SiC复相陶瓷的制备工艺及力学性能[J]. 材料导报, 2021, 35(6): 6065-6070.
[14] 朱界, 张方舟, 谢有菊, 贾林涛, 王梦千, 李爱军. MAX相Ti3SiC2高导电涂层的研究进展[J]. 材料导报, 2021, 35(23): 23025-23032.
[15] 王龙飞, 安丽琼, 孙凯, 范润华. 碳化物超高温陶瓷太阳能选择性吸收涂层的研究进展[J]. 材料导报, 2021, 35(23): 23033-23039.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed