Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6065-6070    https://doi.org/10.11896/cldb.20020026
  无机非金属及其复合材料 |
原位反应烧结Zr2Al4C5化合物增韧ZrB2-SiC复相陶瓷的制备工艺及力学性能
郭启龙1,2,3, 王晓庆1, 王璟1, 裴军军2, 李俊国3, 张联盟3
1 西北民族大学土木工程学院,兰州 730124
2 甘肃省新型建材与建筑节能重点实验室,兰州 730124
3 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
Sintering Processing and Mechanical Properties of In-situ Reaction-Synthesized Zr2Al4C5-toughened ZrB2-SiC Composite Ceramics
GUO Qilong1,2,3, WANG Xiaoqing1, WANG Jing1, PEI Junjun2, LI Junguo3, ZHANG Lianmeng3
1 School of Civil Engineering, Northwest Minzu University, Lanzhou 730124, China
2 Key Laboratory of New Building Materials and Building Energy Efficiency of Gansu Province, Lanzhou 730124, China
3 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 17065KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 ZrB2-SiC复相陶瓷在超高温领域具有重要的应用前景,但韧性低限制了其应用。本工作通过原位反应烧结制备出Zr2Al4C5化合物增韧ZrB2-SiC复相陶瓷,研究了Zr/Al物质的量比和烧结工艺对复相陶瓷的烧结性能、显微结构和力学性能的影响。结果表明:随着Zr/Al物质的量比的减小,原位反应合成的Zr2Al4C5化合物逐渐增多;随着烧结温度的升高,Zr2Al4C5化合物逐渐反应合成;随着烧结压力的增加和保温时间的延长,复相陶瓷主要相成分为ZrB2、SiC和Zr2Al4C5,开气孔率呈现下降的趋势,断裂韧性呈现先增加后降低的趋势。采用Zr/Al物质的量比2:6、烧结温度1 800 ℃、烧结压力20 MPa、保温时间3 min,通过SPS原位反应烧结制备的Zr2Al4C5化合物增韧ZrB2-SiC复相陶瓷,其断裂韧性可达(5.26±0.37) MPa·m1/2;韧化机理主要包括裂纹偏折、裂纹桥接、裂纹分叉以及层状Zr2Al4C5晶粒拔出等能量耗散机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭启龙
王晓庆
王璟
裴军军
李俊国
张联盟
关键词:  ZrB2-SiC陶瓷  Zr/Al配比  烧结工艺    
Abstract: ZrB2-SiC composite ceramics have significant application prospects in the fields of ultra-high temperature, but their low toughness has limited the practical application. In this work, the in-situ synthesized Zr2Al4C5 improves the toughness of ZrB2-SiC composite ceramics sintered by spark plasma sintering, and the effects of Zr/Al molar ratio and sintering parameters on the densification behavior, microstructure and mechanical properties were studied. The results indicate that the amount of in-situ synthesized Zr2Al4C5 compounds increases with decreasing Zr/Al molar ratio. The Zr2Al4C5 compounds gradually forms as increasing the sintering temperature. As the sintering pressure and holding time increase, the open porosity of the multiphase ceramics decreases, while the fracture toughness firstly increases and then decreases. The in-situ reaction-synthesized Zr2Al4C5-toughened ZrB2-SiC composite ceramic, with a Zr/Al molar ratio of 2:6 and at a sintering temperature of 1 800 ℃ and under a sintering pressure of 20 MPa for a holding time of 3 min, exhibits a good fracture toughness of (5.26±0.37) MPa·m1/2. The toughening mechanisms include crack deflection, crack branching, crack bridging and layered Zr2Al4C5 grain pull-out.
Key words:  ZrB2-SiC ceramic    Zr/Al molar ratio    sintering process
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TQ174.75  
基金资助: 材料复合新技术国家重点实验室(武汉理工大学)开放基金项目(2019-KF-7);西北民族大学引进人才项目(Z14013)
通讯作者:  guoqilong8@126.com   
作者简介:  郭启龙,西北民族大学,副教授。2013年7月毕业于武汉理工大学,获得博士学位。2013年7月进入西北民族大学工作至今,主要从事超高温陶瓷材料设计、制备、性能评价以及应用的研究。以第一作者身份在国内外学术期刊上发表论文20余篇,申请国家发明专利3项,其中授权1项。
引用本文:    
郭启龙, 王晓庆, 王璟, 裴军军, 李俊国, 张联盟. 原位反应烧结Zr2Al4C5化合物增韧ZrB2-SiC复相陶瓷的制备工艺及力学性能[J]. 材料导报, 2021, 35(6): 6065-6070.
GUO Qilong, WANG Xiaoqing, WANG Jing, PEI Junjun, LI Junguo, ZHANG Lianmeng. Sintering Processing and Mechanical Properties of In-situ Reaction-Synthesized Zr2Al4C5-toughened ZrB2-SiC Composite Ceramics. Materials Reports, 2021, 35(6): 6065-6070.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020026  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6065
1 Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Journal of the American Ceramic Society,2007,90(5),1347.
2 Zhang X H, Hu P, Han J C, et al. Chinese Science Bulletin,2015,60(3),257(in Chinese).
张幸红,胡平,韩杰才,等.科学通报,2015,60(3),257.
3 Opeka M M, Talmy I G, Zaykoski J. Journal of Materials Science,2004,39,5887.
4 Dong S L, Huo S J, Zhen S Y, et al. Materials Reports B: Research Papers,2018,32(6),1994(in Chinese).
董善亮,霍思嘉,甄淑颖,等.材料导报:研究篇,2018,32(6),1994.
5 Chen Y F, Hong C Q, Hu C L, et al. Advanced Ceramics,2017,38(5),311(in Chinese).
陈玉峰,洪长青,胡成龙,等.现代技术陶瓷,2017,38(5),311.
6 Zhang X H, Hu P, Han J C, et al. Composites Science and Technology,2008,68,1718.
7 Watts J, Hilmas G E, Fahrenholtz W G. Journal of the American Ceramic Society,2011,94(12),4410.
8 Rezapour A, Balak Z. Materials Chemistry and Physics,2020,241,122284.
9 Yang Y, Qian Y H, Xu J J,et al. Ceramics International,2018,44,16150.
10 Balak Z. Materials Chemistry and Physics,2019,235,121706.
11 Yin J, Zhang H, Yan Y J, et al. Scripta Materialia,2012,66,523.
12 Wang Y, Liang J, Han W B, et al. Journal of Alloys and Compounds,2009,475,762.
13 Guo S. Journal of Materials Science,2018,53,4010.
14 Vafa N P, Nayebi B, Asl M S, et al. Ceramic International,2016,42,2724.
15 Nayebi B, Ahmadi Z, Asl M S, et al. Journal of Alloys and Compounds,2019,805,725.
16 Yan X J, Jin X C, Li P, et al. Ceramics International,2019,45,16707.
17 Guicciardi S, Silvestroni L, Nygren M, et al. Journal of the American Ceramic Society,2010,93(8),2384.
18 Asl M S, Zamharir M J, Ahmadi Z, et al. Materials Science and Engineering: A,2018,716,99.
19 Zhang X H, An Y M, Han J C, et al. RSC Advances,2015,5,47060.
20 Yue C G, Liu W W, Zhang L, et al. Scripta Materialia,2013,68,579.
21 Asl M S, Farahbakhsh I, Nayebi B. Ceramic International,2016,42,1950.
22 Lin J, Zhang X H, Wang Z, et al. Scripta Materialia,2011,64,872.
23 Sha J J, Li J, Lv Z Z, et al. Journal of the European Ceramic Society,2017,37,549.
24 Guo Q L, Cao W Z, Gan J Z, et al. Rare Metal Materials and Enginee-ring,2015,44(S1),187(in Chinese).
郭启龙,曹万智,甘季中,等.稀有金属材料与工程,2015,44(S1),187.
25 Guo Q L, Pei J J, Wang J, et al. Rare Metal Materials and Engineering,2018,47(S1),282(in Chinese).
郭启龙,裴军军,王璟,等.稀有金属材料与工程,2018,47(S1),282.
26 Zhao Y, Wang L J, Zhang G J, et al. Journal of the American Ceramic Society,2007,90(12),4040.
27 Rangaraj L, Divakar C, Jayaram V. Journal of the European Ceramic Society,2010,30,3263.
28 Zhang G J, Liu H T, Wu W W, et al. Ultra-high temperature ceramics: materials for extreme environment applications, John Wiley & Sons, United States of America,2014.
29 Guo Q L, Luo S J, Gan J Z, et al. Materials Science and Engineering: A,2015,644,96.
30 Sugiura K, Iwata T, Yoshida H, et a1. Journal of Solid State Chemistry,2008,181,2864.
31 Guo Q L, Li J G, Shen Q, et al. Scripta Materialia,2012,66,296.
[1] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[2] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[3] 张鹏飞, 徐盼盼, 于仁红, 贾德昌, 杨治华. 2Si-B-3C-N陶瓷的热压烧结工艺[J]. 材料导报, 2019, 33(18): 3161-3165.
[4] 侯明, 郭胜惠, 高冀芸, 杨黎, 王梁, 叶小磊. 预合金结合剂成分及烧结工艺对金刚石工具性能的影响[J]. 材料导报, 2019, 33(14): 2403-2407.
[5] 于长新,王发刚,尹凯俐,纪文义,刘新超,魏春城. 弱界面层方向性对层状ZrB2-SiC/石墨陶瓷的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2047-2050.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed