Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20100140-9    https://doi.org/10.11896/cldb.20100140
  无机非金属及其复合材料 |
低气压成型的非引气水泥基材料水化与孔结构
陈歆1, 刘旭1, 李立辉2, 葛勇1, 田波2
1 哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
2 交通运输部公路科学研究院,北京 100088
Hydration and Pore Structure of Non-air-entrained Cement-based Materials Prepared Under Low Air Pressure
CHEN Xin1, LIU Xu1, LI Lihui2, GE Yong1, TIAN Bo2
1 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
2 Research Institute of Highway, Ministry of Transport, Beijing 100088, China
下载:  全 文 ( PDF ) ( 11128KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作探究了低气压与标准大气压下搅拌成型的非引气水泥基材料在水化进程与孔结构发育方面的差异。研究分为模拟试验与现场试验两部分。模拟不同的气压环境成型水泥基材料,对水泥净浆进行水化产物、水化程度与孔结构分析,对砂浆进行气孔参数试验;在不同气压的现场成型水泥基材料,对水泥净浆进行密度试验,对砂浆进行密度试验、气孔参数试验与抗压强度试验。结果表明:不同气压下成型的水泥净浆后续水化产物、水化进程与孔结构发育皆基本一致;低气压下砂浆的气泡尺寸与气泡间距系数较常压下分别减小3.1%和8.1%,而抗压强度差异小于0.5%。由此可见,搅拌成型过程中的低气压环境基本不会对水泥基材料的性能带来不良影响。因此,在研究高海拔地区非引气混凝土问题时可在单位驻地制件,不必远赴高原现场。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈歆
刘旭
李立辉
葛勇
田波
关键词:  水泥基材料  混凝土  砂浆  水泥净浆  水化  孔结构  低气压    
Abstract: This work investigates the differences in hydration and pore structure between cement-based materials prepared (i.e., mixed and set) under low and standard air pressures. The study is divided into two parts, namely, a simulation test and a field investigation. In the simulation study, hydration products, hydration degree and pore structures of cement pastes and air-void characteristics of mortars prepared under different simulated air pressures were analyzed. In the field study, the densities of cement pastes and densities, strengths and air-void characteristics of mortars prepared in regions under different air pressures were tested. The results show that hydration products, hydration process and pore structure of cement pastes prepared under various air pressures are essentially unchanged. Compared to the average radius and spacing factor of air-voids in the mortar prepared under standard air pressure, those of air-voids in the mortar prepared under low air pressure are respectively 3.1% and 8.1% lower; however, the difference in compressive strength is less than 0.5%. In general, low air pressure during mixing and setting stages do not negatively affect the properties of cement-based materials. Therefore, the properties of concrete to be used in construction projects in high-elevation locations can reliably be established by testing specimens prepared at low elevations.
Key words:  cement-based materials    concrete    mortar    cement paste    hydration    pore structure    low air pressure
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TU528  
基金资助: 国家国际科技合作专项项目(ISTCP 2014DFR81000);西藏自治区交通运输厅科技项目(XZJTKJ〔2020〕04)
通讯作者:  hitbm@163.com;b.tian@rioh.cn   
引用本文:    
陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构[J]. 材料导报, 2022, 36(12): 20100140-9.
CHEN Xin, LIU Xu, LI Lihui, GE Yong, TIAN Bo. Hydration and Pore Structure of Non-air-entrained Cement-based Materials Prepared Under Low Air Pressure. Materials Reports, 2022, 36(12): 20100140-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100140  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20100140
1 Ge X, Ge Y, Li Q F, et al. Construction and Building Materials, 2018, 187, 830.
2 Ge X, Ge, Y, Du Y B, et al. Magazine of Concrete Research, 2018. 70(18), 919.
3 Ge X. The research on effect of plateau climatic conditions on concrete performance and cracking mechanism. Ph.D. Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
葛昕. 高原气候条件对混凝土性能及开裂机制影响的研究.博士学位论文, 哈尔滨工业大学, 2019.
4 Huo J Y, Wang Z J, Chen H X, et al. Materials, 2019, 12, 1384.
5 He R, Wang T, Chen H X, et al. China Journal Highway and Transport, 2020, 33(7), 29 (in Chinese).
何锐, 王铜, 陈华鑫, 等.中国公路学报, 2020, 33(7), 29.
6 Chen H X, Wang T, He R, et al. Journal of Chang'an University (Natural Science Edition), 2020, 40(2), 30 (in Chinese).
陈华鑫, 王铜, 何锐, 等.长安大学学报(自然科学版), 2020, 40(2), 30.
7 Zhang A, Yang W C, Ge Y,et al. Construction and Building Materials, 2020, 249, 118787.
8 Li X F, Fu Z, Luo Z. Magazine of Concrete Research, 2015, 67(8), 391.
9 Li X F, Fu Z. Journal of the Chinese Ceramic Society, 2015, 43(8), 1076 (in Chinese).
李雪峰, 付智.硅酸盐学报, 2015, 43(8), 1076.
10 Li X F, Fu Z, Luo Z, et al. Journal of Southeast University (Natural Science Edition), 2014, 44(5), 1046 (in Chinese).
李雪峰, 付智, 罗翥, 等. 东南大学学报(自然科学版), 2014, 44(5), 1046.
11 Li X F, Fu Z. Transactions of the Chinese Society of Agriculture Enginee-ring, 2015, 31(11), 165 (in Chinese).
李雪峰, 付智. 农业工程学报, 2015, 31(11), 165.
12 Li X F, Fu Z, Luo Z. Journal of Highway Transportation Research and Development, 2015, 32(2), 49 (in Chinese).
李雪峰, 付智, 罗翥.公路交通科技, 2015, 32(2), 49.
13 Li X F. Anti-frost design method and preventive measures for concrete structure in the Qinghai-Tibet Plateau. Ph.D. Thesis, Southeast University, China, 2015 (in Chinese).
李雪峰. 青藏高原地区混凝土抗冻设计及预防措施研究. 博士学位论文, 东南大学, 2015.
14 Ran Y Z. Research on mixing and air entraining characteristics of cement-based materials in low air pressure environment. Master's Thesis, Southwest Jiaotong University, China, 2016 (in Chinese).
冉宇舟. 低气压环境下水泥基材料搅拌分散与引气特性研究. 硕士学位论文, 西南交通大学, 2016.
15 Chen Z X. Study on frost resistance design and measure of concrete in Qinghai Tibet Plateau. Master's Thesis, Xi'an University of Architecture and Technology, China, 2017 (in Chinese).
陈再兴. 青藏高原地区混凝土抗冻设计及措施研究. 硕士学位论文, 西安建筑科技大学, 2017.
16 Chen X, Liu X, Tian B, et al. Materials, 2020, 13(8), 3975.
17 Li Y, Wang Z D, Wang L. Journal of Wuhan University of Technol-Materials Science Edition, 2019, 34, 1365.
18 Shi Y, Yang H Q, Zhou S H,et al. Advances in Materials Science and Engineering, 2018, 2018, 6528412.
19 Zeng X H, Lan X L, Zhu H S, et al. Materials, 2020, 13(8), 1820.
20 Ma X F. Effect of low humidity and low atmospheric pressure on the pro-perties of concrete. Master's Thesis, Harbin Institute of Technology,China, 2016 (in Chinese).
马新飞. 低压低湿养护对混凝土性能影响的研究. 硕士学位论文, 哈尔滨工业大学, 2016.
21 Chen H W, Hu Y B, Zhang Y B. Bulletin of Chinese Ceramic Society, 2016, 35(8), 2681 (in Chinese).
陈红伟, 胡玉兵, 张云必.硅酸盐通报, 2016, 35(8), 2681.
22 Feng X, Garboczi E J, Bentz D P, et al. Cement and Concrete Research, 2004, 34(10), 1787.
23 Li F P, Liu J S. Construction and Building Materials, 2018, 166, 684.
24 Cullingford H S, Keller M D, Higgins R W. Journal of Vacuum Science and Technology, 1982, 20, 1043.
[1] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[2] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[3] 陈燕强, 钱春香, 张健. 材料参数对清水混凝土表观气孔控制的影响[J]. 材料导报, 2022, 36(Z1): 22030021-9.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[8] 刘猛, 王庆, 朱晨, 顿鹏, 刘勇. 水洗和粉磨预处理前后煅烧磷石膏的性能变化及应用[J]. 材料导报, 2022, 36(Z1): 22020111-5.
[9] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[10] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[11] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[12] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[13] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[14] 尹道道, 王海, 张珍杰, 向飞, 王海龙, 纪宪坤. 室外环境下不同尺寸混凝土中膨胀剂的应用效果研究[J]. 材料导报, 2022, 36(Z1): 21110148-4.
[15] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed