Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23025-23032    https://doi.org/10.11896/cldb.20090046
  无机非金属及其复合材料 |
MAX相Ti3SiC2高导电涂层的研究进展
朱界, 张方舟, 谢有菊, 贾林涛, 王梦千, 李爱军
上海大学材料科学与工程学院,材料所,上海200444
Research Progress in MAX Phase Ti3SiC2 Highly Conductive Coating
ZHU Jie, ZHANG Fangzhou, XIE Youju, JIA Lintao, WANG Mengqian, LI Aijun
Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
下载:  全 文 ( PDF ) ( 6827KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛硅碳(Ti3SiC2, TSC)是一种兼具金属材料和陶瓷材料优异性能的新型三元化合物MAX相。Ti3SiC2作为高导电功能涂层具有很大的应用潜力,近年来受到越来越多的关注。Ti3SiC2涂层的制备技术在不断改革优化,主要有五种常见制备工艺,分别是化学气相沉积法(CVD)、物理气相沉积法(PVD)、固相反应合成法(Solid-state reaction)、气溶胶沉积法(ADM)和热喷涂法(Thermal spraying)。
Ti3SiC2涂层的性能在很大程度上与其纯度相关,通常制得的Ti3SiC2涂层均含有一定程度的杂质,这是制约其广泛应用的一个重要因素。Ti3SiC2涂层中经常出现的杂质主要是TiC、Ti5Si3、SiC、TiSi2等,不同的制备方法产生的杂质种类也不一样。为了提高Ti3SiC2涂层的纯度,需要对其制备工艺进行探索和优化。目前,反应化学气相沉积(RCVD)实现了通过消耗碳化硅(SiC)子层在石墨基底上生长纯Ti3SiC2涂层。近年来利用ADM也实现了在室温下合成纯Ti3SiC2涂层,这一技术降低了常规Ti3SiC2涂层的合成温度。此外,PVD法不仅为低温制备Ti3SiC2涂层提供了可能性,还实现了Ti-Si-C复合涂层的工业化生产。
本文综述了Ti3SiC2涂层的研究现状,分析了Ti3SiC2涂层独特的晶体结构及优异性能,介绍了近年来几种常见的Ti3SiC2涂层制备技术,并指出了目前合成纯Ti3SiC2涂层所面临的巨大挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱界
张方舟
谢有菊
贾林涛
王梦千
李爱军
关键词:  Ti3SiC2涂层  结构  性能  制备方法    
Abstract: Ti3SiC2(TSC) is a new type of ternary compound MAX phase with excellent properties of both metallic and ceramic materials. Ti3SiC2 as a high conductive coating with great application potential has attracted more and more attention in recent years. The preparation technologies of Ti3SiC2 coating are constantly being reformed and optimized. There're mainly five common processes to prepare Ti3SiC2 coating, including chemical vapor deposition (CVD), physical vapor deposition (PVD), solid-state reaction, aerosol deposition method (ADM) and thermal sp-raying, respectively.
The properties of Ti3SiC2 coatings are closely related to their purity to a large extent. Usually, a certain degree of impurities are contained in Ti3SiC2 coating, which has become an important factor restricting its wide application. It is found that the impurities in Ti3SiC2 coating are mainly TiC, Ti5Si3, SiC, TiSi2, etc. More over, the kinds of impurities produced by different methods are different. In order to improve the purity of Ti3SiC2 coating, it is necessary to explore and optimize the preparation process. At present, reactive chemical vapor deposition (RCVD) has realized the growth of pure Ti3SiC2 coating on graphite substrate by consuming silicon carbide (SiC) sublayer. Besides, ADM has also produced pure Ti3SiC2 coatings at room temperature, which reduces the synthesis temperature of conventional Ti3SiC2 coating. In addition, PVD technology not only provides the possibility of synthesizing Ti3SiC2 coating at low temperature, but also realizes the industrial production of Ti-Si-C composite coating.
This paper comprehensively reviews the recent research on Ti3SiC2. The unique crystal structure and excellent properties of Ti3SiC2 coating are discussed. The different ways to prepare Ti3SiC2 coating were analyzed and current challenges in the synthesis of pure Ti3SiC2 coating were also introduced. Furthermore, the current and potential applications of Ti3SiC2 coating has been summarized. Overall, the analyses and discussions of various Ti3SiC2 coating synthesis technologies in this review will be contributed to synthesis of high purity Ti3SiC2 coating in the future.
Key words:  Ti3SiC2 coating    structure    property    preparation
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(21676163;51602189)
通讯作者:  zhangfzh@shu.edu.cn;aijun.li@shu.edu.cn   
作者简介:  朱界,2017年6月毕业于南京工程学院,获得工学学士学位。现为上海大学材料科学与工程学院硕士研究生,在李爱军教授的指导下进行研究,目前主要研究领域为钛硅碳涂层的化学气相沉积。
张方舟,现任上海大学材料与工程学院助理研究员。2014年博士毕业于法国巴黎高等师范大学—卡尚分校。毕业回国后先后任职于航天材料及工艺研究所、上海大学。近五年先后取得人社部留学归国人员科技活动择优资助项目、国家自然科学基金青年项目、装备发展部重点实验室基金项目。以第一作者和通信作者在Nano Energy、Journal of Composite Material等学术刊物发表SCI论文6篇。目前主要从事陶瓷基复合材料的力学性能和行为研究。
李爱军,上海大学可持续能源研究院副院长、上海大学绍兴研究院院长、上海大学材料科学与工程学院教授,博士研究生导师。2004年12月获西北工业大学材料学博士学位,2005年4月留学德国卡尔斯鲁厄大学(KIT),主要从事航空航天动力系统用超高温碳/碳和碳化硅/碳化硅复合材料反应合成、快速低成本制造及应用基础研究。
引用本文:    
朱界, 张方舟, 谢有菊, 贾林涛, 王梦千, 李爱军. MAX相Ti3SiC2高导电涂层的研究进展[J]. 材料导报, 2021, 35(23): 23025-23032.
ZHU Jie, ZHANG Fangzhou, XIE Youju, JIA Lintao, WANG Mengqian, LI Aijun. Research Progress in MAX Phase Ti3SiC2 Highly Conductive Coating. Materials Reports, 2021, 35(23): 23025-23032.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090046  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23025
1 Nowotny V H. Progress in Solid State Chemistry, 1971, 5, 27.
2 Jeitschko W, Nowotny H, Benesovsky F. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1964, 95(1), 178.
3 Barsoum M W. Progress in Solid State Chemistry, 2000, 28(1-4), 201.
4 Shahzad F, Alhabeb M, Hatter C B, et al. Journal of Physics: Condensed Matter, 2016, 353(6304), 1137.
5 Zhang F Y, Zhao L P, Yan S, et al. Ceramics International, 2020, 46(10), 16298.
6 Yan H, Liu K W, Zhang P L, et al. Optics & Laser Technology, 2020, 126, 106077.
7 Jiao Q, Guo F F, Li C, et al. Ceramics International, 2020, 46(9), 12948.
8 Lu J L, Abbas N, Tang J N, et al. Electrochemistry Communications, 2019, 105, 106490.
9 Zhu B, Mei B C, Shen C H, et al. Journal of Power Sources, 2006, 161(2), 997.
10 Zhang H L, Su R R, Shi L Q, et al. Applied Surface Science, 2018, 434, 1210.
11 Jodrph W, Simon M, Matthew T, et al. Journal of Nuclear Materials, 2018, 502, 220.
12 Nappé J C, Grosseau P, Audubert F, et al. Journal of Nuclear Materials, 2009, 385(2), 304.
13 Kurbakov S D. Atomic Energy, 2009, 106(6), 377.
14 Chen D, Gu H Z, Huang A, et al. Journal of Alloys and Compounds, 2019, 791, 461.
15 Kocher M, Rommel M, Erlbacher T, et al.In: Materials Science Forum. Swizerland, 2018, pp. 393.
16 Tang Y D, Shen H J, Zhang X F, et al.In: Materials Science Forum. Swizerland, 2017, pp. 395.
17 Fashandi H, Dahlqvist M, Lu J, et al. Nature Materials, 2017, 16(8), 814.
18 Zhao D, Xia S Q, Wang Y G, et al. Applied Physics a-Materials Science & Processing, 2020, 126(1), 69.
19 Garg A, Goel S, Kumari N, et al. Journal of Electronic Materials, 2020, 49(3), 2233.
20 Liu Y, Su X L, He X H, et al. Journal of Materials Science-Materials in Electronics, 2019, 30(3), 2630.
21 Chen D, Luo F, Zhou W C, et al. Journal of Electronic Materials, 2019, 48(3), 1506.
22 Zhang H, Wang X H, Zhou Y C. Advanced Ceramics, 2019, 40(3), 150 (in Chinese).
张辉, 王晓辉, 周延春.现代技术陶瓷, 2019, 40(3), 150.
23 Li J H, Zhang C, Wang X H. Advanced Ceramics, 2017, 38(1), 3 (in Chinese).
李建华, 张 超, 王晓辉.现代技术陶瓷, 2017, 38(1), 3.
24 Lian R C, Li Y X, Bai P K, et al. Foundry Technology, 2016, 37(2), 209 (in Chinese).
廉睿超, 李玉新, 白培康, 等. 铸造技术, 2016, 37(2), 209.
25 Shannahan L, Barsoum M W, Lamberson L. Engineering Fracture Mechanics, 2017, 169, 54.
26 Barsoum M W. MAX phases: properties of machinable ternary carbides and nitrides. John Wiley & Sons Press, USA, 2013.
27 Eklund P, Beckers M, Jansson U, et al. Thin Solid Films, 2010, 518(8), 1851.
28 Ganguly A. Synthesis and characterization of solid solutions of MN+1AXN phases. Ph.D. Thesis, Drexel University, USA, 2006.
29 Radovic M, Barsoum M W. American Ceramics Society Bulletin, 2013, 92(3), 20.
30 Barsoum M W, El-Raghy T, Rawn C, et al. Journal of Physics and Che-mistry of Solids, 1999, 60, 429.
31 Kisi E, Crossley J, Myhra S, et al. Journal of Physics and Chemistry of Solids, 1998, 59(9), 1437.
32 Zhou Y C, Sun Z M. Journal of Physics: Condensed Matter, 2000, 12(28), L457.
33 Hu J Q, Xie M, Chen J L, et al. Acta Physica Sinica, 2017, 66(5), 057102.
34 Zhang H B, Bao Y W, Zhou Y C. Journal of Materials Sciences and Technology, 2009, 25(1), 1.
35 Emmerlich J, Eklund P, Rittrich D, et al. Journal of Materials Research, 2011, 22(8), 2279.
36 Zhou Y C, Sun Z M. Material Research Innovations, 2000, 3(5), 286.
37 Atazadeh N, Heydari M S, Baharvandi H R, et al. International Journal of Refractory Metals and Hard Materials, 2016, 61, 67.
38 Cai Y Z, Cheng L F, Yin H F, et al. Ceramics International, 2017, 43(9), 6648.
39 Furgeaud C, Brenet F, Nicolai J. Materialia, 2019, 7, 100369.
40 Galvin T, Hyatt N C, Rainforth W M, et al. Surface & Coatings Techno-logy, 2019, 366, 199.
41 Islak B Y, Ayas E. Ceramics International, 2019, 45(9), 12297.
42 Li X, Zhang C H, Zhang S, et al. Optics and Laser Technology, 2019, 114, 209.
43 Liu Y, Jian X Y, Su X L, et al. Journal of Alloys and Compounds, 2018, 740, 68.
44 Magnus C, Sharp J, Rainforth W M. Tribology Transactions, 2020, 63(1), 38.
45 Tatarko P, Casalegno V, Hu C, et al. Journal of the European Ceramic Society, 2016, 36(16), 3957.
46 Wen Q L, Zhou W C, Wang Y D, et al. Journal of Materials Science, 2017, 52(2), 832.
47 Xu B B, Chen Q Y, Li X H, et al. Ceramics International, 2019, 45(1), 948.
48 Zhou M Z, Lu W L, Liu X J, et al. Tribology International, 2018, 118, 196.
49 Eklund P, Rosen J, Persson P O. Journal of Physics D: Applied Physics, 2017, 50(11), 113001.
50 Emmerlich J, Högberg H, Sasvári S, et al. Journal of Applied Physics, 2004, 96(9), 4817.
51 Palmquist J P, Li S, Persson P, et al. Physical Review B, 2004, 70(16), 165401.
52 Berger O. Surface Engineering, 2020, 36(3), 225.
53 Liu Y, Su X L, Luo F, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(3), 2500.
54 Chen D, Luo F, Zhou W C, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(16), 13534.
55 Liu Y, Li Y Y, Luo F, et al. Journal of Alloys and Compounds, 2017, 715, 21.
56 Su J B, Zhou W C, Wang H Y, et al. Journal of Thermal Spray Technology, 2016, 25(4), 639.
57 Su J B, Zhou W C, Liu Y, et al. Journal of Materials Science: Materials in Electronics, 2015, 27(3), 2460.
58 Wang H Y, Zhu D M, Zhou W C, et al. Rsc Advances, 2015, 5(105), 86656.
59 Su J B, Zhou W C, Liu Y, et al. Surface and Coatings Technology, 2015, 270, 39.
60 Liu Y, Luo F, Wang Y, et al. Journal of Alloys and Compounds, 2015, 629, 208.
61 Liu Y, Luo F, Su J B, et al. Journal of Alloys and Compounds, 2015, 632, 623.
62 Goto T. Journal of Wuhan University of Technology-Mater Sci Ed, 2016, 31(1), 15.
63 Muñoz R, Gómez-Aleixandre C. Chemical Vapor Deposition, 2013, 19(10-12), 297.
64 Goto T, Hirai T. Materials Research Bulletin, 1987, 22(9), 1195.
65 Pickering E, Lackey W J, Crain S. Chemical Vapor Deposition, 2000, 6(6), 289.
66 Nickl J, Schweitzer K, Luxenberg P. Journal of the Less Common Metals, 1972, 26(3), 335.
67 Racault C, Langlais F, Naslain R, et al. Journal of Materials Science, 1994, 29(15), 3941.
68 Jacques S, Di-Murro H, Berthet M P, et al. Thin Solid Films, 2005, 478(1-2), 13.
69 Lin T C, Hon M H. Ceramics International, 2008, 34(3), 631.
70 Fakih H, Jacques S, Berthet M P, et al. Surface and Coatings Technology, 2006, 201(6), 3748.
71 Jacques S, Fakih H. Advances in Science and Technology, 2006, 45, 1085.
72 Fakih H, Jacques S, Dezellus O, et al. Journal of Phase Equilibria and Diffusion, 2008, 29(3), 239.
73 Jacques S, Fakih H, Viala J C. Thin Solid Films, 2010, 518(18), 5071.
74 Yang G Y, Li G D, Xiong X, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(5), 797.
75 Liu S, Lu W Z, Chen Y G, et al. Key Engineering Materials, 2016, 693, 813.
76 Chen Z S, Li H J, Fu Q G, et al. Materials Science and Technology, 2013, 29(8), 975.
77 Cunha L, Vaz F, Moura C, et al. Journal of Nanoscience and Nanotech-nology, 2010, 10(4), 2926.
78 Lauridsen J, Eklund P, Joelsson T, et al. Surface & Coatings Technology, 2010, 205(2), 299.
79 Sonoda T, Nakao S, Ikeyama M. Japanese Journal of Applied Physics, 2012, 51(1S), 01AC06.
80 Sonoda T, Nakao S, Ikeyama M. Japanese Journal of Applied Physics, 2013, 52(11), 11NJ14.
81 Palmquist J P, Jansson U, Seppänen T, et al. Applied Physics Letters, 2002, 81(5), 835.
82 Sonoda T, Nakao S, Ikeyama M. Journal of Physics: Conference Series, 2013, 417(1), 012063.
83 Lawniczak-Jablonska K, Klepka M T, Dynowska E, et al. Radiation Phy-sics and Chemistry, 2013, 93, 168.
84 Vishnyakov V, Lu J, Eklund P, et al. Vacuum, 2013, 93, 56.
85 Eklund P, Beckers M, Frodelius J, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2007, 25(5), 1381.
86 Magnuson M, Tengdelius L, Greczynski G, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2019, 37(2), 021506.
87 Alami J, Eklund P, Emmerlich J, et al. Thin Solid Films, 2006, 515(4), 1731.
88 Phani A R, Krzanowski J E, Nainaparampil J J. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2001, 19(5), 2252.
89 Hu J J, Bultman J E, Patton S, et al. Tribology Letters, 2004, 16(1-2), 113.
90 Lange C, Barsoum M W, Schaaf P. Applied Surface Science, 2007, 254(4), 1232.
91 Tsukimoto S, Nitta K, Sakai T, et al. Journal of Electronic Materials, 2004, 33(5), 460.
92 Tsukimoto S, Sakai T, Murakami M. Journal of Applied Physics, 2004, 96(9), 4976.
93 Veisz B, Pécz B. Applied Surface Science, 2004, 233(1-4), 360.
94 Yu H L, Zhang X F, Shen H J, et al. Journal of Applied Physics, 2015, 117(2), 025703.
95 Akedo J, Lebedev M. Japanese Journal of Applied Physics, 1999, 38(9S), 5397.
96 Piechowiak M A, Henon J, Durand O, et al. Journal of the European Ceramic Society, 2014, 34(5), 1063.
97 Henon J, Piechowiak M A, Durand O, et al. Journal of the European Ceramic Society, 2015, 35(4), 1179.
98 Pasumarthi V, Chen Y, Bakshi S R, et al. Journal of Alloys and Compounds, 2009, 484(1-2), 113.
99 Trache R, Puschmann R, Leyens C, et al. In: Thermal Spray 2013: Proceedings of the International Thermal Spray Conference. Busan, 2013, pp.74.
100 Li C, Yan S, Zhang F Y, et al. Vacuum, 2019, 161, 14.
101 Song Q, Ye F, Kong L, et al. Advanced Functional Materials, 2020, 30(31), 2000475.
102 Tsukimoto S, Nitta K, Sakai T, et al. Journal of Electronic Materials, 2004, 33(5), 460.
103 Wen Q L, Zhou W C, Wang Y D, et al. Journal of Materials Science, 2016, 52(2), 832.
[1] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[2] 欧珊, 牟自豪, 林涛, 李瑶, 冯威, 刘文龙. 两步法制备碳化钛薄膜及其电容性能[J]. 材料导报, 2021, 35(z2): 18-21.
[3] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[4] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[5] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[6] 王小玉. 四氧化三钴纳米材料制备路线的研究进展[J]. 材料导报, 2021, 35(z2): 64-67.
[7] 张凯, 高本征, 龚旻, 罗波, 范锦鹏. 软模板法制备六瓣状氧化铝微米片[J]. 材料导报, 2021, 35(z2): 68-71.
[8] 艾兵, 包予佳, 张世超, 孙现凯, 孙浩然, 陶柳实, 王春朋. 氧化锌和氧化镁对磷酸盐胶黏剂吸潮性能的影响[J]. 材料导报, 2021, 35(z2): 72-74.
[9] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[10] 陶柳实, 李娜, 张世超, 王华, 潘传才, 艾兵, 王春朋. Al(H2PO4)3/Al2O3复合硬质材料吸湿改性研究[J]. 材料导报, 2021, 35(z2): 94-96.
[11] 穆武第, 许永平, 盛德军. 尖锥型结构宽频吸波材料设计[J]. 材料导报, 2021, 35(z2): 115-117.
[12] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[13] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[14] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[15] 郝培文, 李万军, 韩钰祥, 苏纪壮, 乐宸. 基于OT试验的乳化沥青冷再生面层混合料抗反射裂缝性能研究[J]. 材料导报, 2021, 35(z2): 150-157.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed