Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20100023-7    https://doi.org/10.11896/cldb.20100023
  无机非金属及其复合材料 |
GaAs基大功率半导体激光器的研究进展
张旭1, 董海亮1, 贾志刚1, 张爱琴2, 梁建3, 许并社1,4
1 太原理工大学新材料界面科学与工程教育部重点实验室,太原 030024
2 太原理工大学轻纺工程学院,太原 030024
3 太原理工大学材料科学与工程学院,太原 030024
4 陕西科技大学材料原子·分子科学研究所,西安 710021
Progress of GaAs Based High-power Semiconductor Lasers
ZHANG Xu1, DONG Hailiang1, JIA Zhigang1, ZHANG Aiqin2, LIANG Jian3, XU Bingshe1,4
1 Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
2 College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
3 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
4 Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 2723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 经半个多世纪的发展,半导体激光器的理论和实践都取得巨大成果。近年来,GaAs基大功率半导体激光器凭其优势,在众多领域得到广泛应用。但是GaAs基大功率半导体激光器仍面临着功率不足、发热量大及光束质量差的问题。光电性能差是限制其应用的关键问题,如何进一步提高激光器的光电性能是半导体激光器面临的挑战。
输出功率、电光转换效率、光束质量、寿命和可靠性是衡量半导体激光器性能最重要的参数。电光转换效率直接影响器件的输出功率,转换效率低产生的热量更多,导致器件工作温度升高,使得器件的稳定性变差,严重影响器件的寿命和可靠性。
近年来,随着GaAs基大功率半导体激光器外延生长技术的提高、器件结构设计的理论水平提高以及封装技术的提升,激光器的输出功率和电光转换效率均得到了大幅提高。从2007年到2017年,边发射激光器的单管输出功率已由14.7 W提高至33 W,而光抽运面发射器件在2018年单管输出功率高达72 W。2020年单管器件的电光转换效率已高达74.6%。随着高效冷却技术的发展,半导体激光器的寿命已达百万小时以上。
本文主要介绍了GaAs基半导体激光器近年来的发展状况,综述了外延结构、输出功率、电光转换效率、光束质量、寿命和可靠性等方面的发展现状,探讨了影响输出功率的各种因素及目前的解决方法,展望了半导体激光器未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张旭
董海亮
贾志刚
张爱琴
梁建
许并社
关键词:  大功率半导体激光器  砷化镓(GaAs)  输出功率  电光转换效率  光束质量  寿命与可靠性    
Abstract: After more than half a century of development of semiconductor laser, great achievements have been made in theory and practice. In recent years, GaAs based high-power semiconductor lasers have been widely used in many fields because of their advantages. However, GaAs based high-power semiconductor lasers still face the problems of insufficient power, high heat and poor beam quality. The key problem is poor photoelectric performances which limits its application. However, the challenge is how to further improve the overall optoelectronic performance of semiconductor lasers.
Output power, electro-optic conversion efficiency, beam quality, lifetime and reliability are the most important parameters to evaluate the performances of semiconductor lasers. The electro-optic conversion efficiency directly affects the output power. Low conversion efficiency results in more heat, which leads to the increase of working temperature of the device. Lifetime and reliability will get worse obviously because of the deterioration of stability of the device.
In recent years, with the improvement of epitaxial growth technology of GaAs based high-power semiconductor lasers, the optimization of the theoretical level of laser device structure design and the improvement of packaging technology, the output power and electro-optic conversion efficiency of semiconductor lasers have been greatly improved. From 2007 to 2017, the output power of single tube edge emitting laser diode increases from 14.7 W to 33 W. The output power of single tube optical pumped surface emitting laser diode reached 72 W in 2018. The electro-optic conversion efficiency of single tube laser diode has reached 74.6% in 2020. With the improvement of high efficient cooling technology, the lifetime of semiconductor lasers has reached more than a million hours.
In this paper, the development status of GaAs based semiconductor laser in recent years was mainly introduced. Current development status quo of the extensional structure, output power, electro-optic conversion efficiency, beam quality, lifetime and reliability were summarized. The various factors that affect the output power and their current solution were discussed. The development trend of semiconductor laser was prospected.
Key words:  high-power semiconductor laser    gallium arsenide (GaAs)    output power    electro-optic conversion efficiency    beam quality    lifetime and reliability
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TN248.4  
基金资助: 国家自然科学基金(61904120;21972103;61604104;51672185);国家重点研发计划(2016YFB0401803);山西省基础研究项目(201801D221124;201801D121101;201901D111111;201901D211090;201601D202029);山西省重点研发项目(201803D31042)
通讯作者:  dhltyut@163.com;xubs@tyut.edu.cn   
作者简介:  张旭,2015年6月毕业于洛阳理工学院,获得金属材料工程工学学士学位。现为太原理工大学新材料界面科学与工程教育部重点实验室硕士研究生。目前主要研究领域为大功率半导体激光器。
许并社,教授,博士研究生导师。1978年在太原理工大学获学士学位,1994年在日本东京大学获工学博士学位。先后主持完成和正在进行着国家杰出青年科学基金项目、国家“973”计划课题,科技部国际科技合作项目、国家自然科学基金重大研究计划(纳米专项)、国家自然科学基金、国家自然科学基金中日国际合作项目等国家级、省部级项目40余项。主要研究方向包括新型半导体材料和有机电致发光材料及其器件中的界面问题。在Nature Communication, Advanced Functional Materials, Acta Materialia等国内外知名学术期刊发表学术论文350余篇。
引用本文:    
张旭, 董海亮, 贾志刚, 张爱琴, 梁建, 许并社. GaAs基大功率半导体激光器的研究进展[J]. 材料导报, 2022, 36(12): 20100023-7.
ZHANG Xu, DONG Hailiang, JIA Zhigang, ZHANG Aiqin, LIANG Jian, XU Bingshe. Progress of GaAs Based High-power Semiconductor Lasers. Materials Reports, 2022, 36(12): 20100023-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100023  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20100023
1 Ning Y Q, Chen Y Y, Zhang J, et al. Acta Optica Sinica, 2021, 41(1), 0114001 (in Chinese).
宁永强, 陈泳屹, 张俊,等. 光学学报, 2021, 41(1), 0114001.
2 Wang B Z, Dong L H, Wang H D, et al. Materials Reports A: Review Papers, 2020, 34(3), 5127 (in Chinese).
王博正, 董丽虹, 王海斗, 等. 材料导报:综述篇, 2020, 34(3), 5127.
3 Wang L J, Ning Y Q, Qin L, et al. Chinese Journal of Luminescence, 2015, 36(1), 2 (in Chinese).
王立军, 宁永强, 秦莉, 等. 发光学报, 2015, 36(1), 2.
4 Yuan Q H, Jing H Q, Zhang Q Y, et al. Laser Optoelectronics Progress, 2019, 56(4), 2 (in Chinese).
袁庆贺, 井红旗, 张秋月, 等. 激光与光电子学进展, 2019, 56(4), 2.
5 Chen L H, Yang G W, Liu Y X, et al. Chinese Journal of Lasers, 2020, 47(5), 14 (in Chinese).
陈良惠, 杨国文, 刘育衔, 等. 中国激光, 2020, 47(5), 14.
6 Taniguchi H, Ishii H, Minato R, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(5), 1176.
7 Bezotosnyi V V, Bondarev V Y, Krokhin O N, et al. Quantum Electro-nics, 2009, 39(3), 242.
8 Morita T, Nagakura T, Torii K, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4), 1502104.
9 Demir A, Peters M, Duesterberg R, et al. In: Conference on High-Power Diode Laser Technology and Applications XIII. San Francisco, CA, 2015, pp. 9348.
10 Zediker M S, Kaifuchi Y, Yamagata Y, et al. In: Conference on High-Power Diode Laser Technology XV. San Francisco, CA. 2017, pp. 10086.
11 Ren Z, Li Q, Li B, et al. Journal of Semiconductors, 2020, 41(3), 032901.
12 Miller M, Grabherr M, King R, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(2), 213.
13 D'Asaro L A, Seurin J F, Wynn J D. Photonics Spectra, 2005, 39(2), 62.
14 Zhou D, Seurin J F, Xu G, et al. Proceedings of SPIE-the International Society for Optical Engineering, 2015, 9381, 93810B.
15 Zhou D, Seurin J F, Xu G, et al. In: Conference on Vertical-Cavity Surface-Emitting Lasers XXI. San Francisco, CA, 2017, pp. 10122.
16 Li W, Qi Y X, Liu S P, et al. Optics & Laser Technology, 2020, 132, 106510.
17 Li Y J, Zong N, Peng Q J. Laser Optoelectronics Progress, 2018, 55(5), 2 (in Chinese).
李玉娇, 宗楠, 彭钦军. 激光与电子学进展, 2018, 55(5), 2.
18 Zhao P, Xu B, van Leeuwen R, et al. Optics Letters, 2014, 39(16), 4767.
19 Kuznetsov M, Hakimi F, Sprague R, et al. IEEE Photonics Technology Letters, 1997, 9(8), 1064.
20 Heinen B. Electronics Letters, 2012, 48(9), 516.
21 Kahle H, Nechay K, Penttinen J P, et al. Optics Letters, 2018, 43(7), 1579.
22 Kantola E, Penttinen J P, Ranta S, et al. Electronics Letters, 2018, 54(19), 1136.
23 Nechay K, Kahle H, Penttinen J P, et al. IEEE Photonics Technology Letters, 2019, 31(15), 1247.
24 Zhang J Y, Zhang J W, Zeng Y G, et al. Acta Physica Sinica, 2020, 69(5), 91 (in Chinese).
张继业, 张建伟, 曾玉刚, 等. 物理学报, 2020, 69(5), 91.
25 Ma X Y, Wang J, Liu S P. Infrared and Laser Engineering, 2008, 37(2), 190 (in Chinese).
马晓宇, 王俊, 刘素平. 红外与激光工程, 2008, 37(2), 190.
26 Zhou K, Du W, Li Y, et al. Superlattices and Microstructures, 2019, 129, 40.
27 Shi J X. Research and manufacture of broad-stripe second-order metal grating distributed feedback semiconductor lasers. Master's Thesis, University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, CAS), China, 2011 (in Chinese).
仕均秀. 宽条型二阶金属光栅分布反馈半导体激光器的研制. 硕士学位论文, 中国科学院研究生院(长春光学精密机械与物理研究所), 2011.
28 Liu Y. Design and epitaxial growth of InGaAs/GaAsP materials for semiconductor laser emitting wavelength at 980 nm. Master's Thesis, Changchun University of Science and Technology, China, 2014 (in Chinese).
刘洋. 980 nm InGaAs/GaAsP半导体激光器材料结构设计与外延生长. 硕士学位论文, 长春理工大学, 2014.
29 Li T, Hao E J, Zhang Y. Journal of Infrared & Millimeter Waves, 2015, 34(5), 614.
30 Xu Z W, Qu Y, Wang Y Z. et al. Infrared and Laser Engineering, 2014, 43(4), 2 (in Chinese).
徐正文, 曲轶, 王钰智, 等. 红外与激光工程, 2014, 43(4), 2.
31 Gao X, Qiao Z L, Xu L Y, et al. In: International Conference on Optoelectronics & Microelectronics. Changchun, China, 2016, pp, 67.
32 Hu H, Qiu B C, He J G, et al. Chinese Journal of Lasers, 2018, 45(8), 38.
33 Huang Y, Hu M H, Ho J, et al. In: Asia Communications and Photonics Conference 2020. Beijing, China, 2020, pp. T2G4.
34 Yang H W, Huang K, Chen H T, et al. Micronanoelectronic Technology, 2010, 47(2), 72 (in Chinese).
杨红伟, 黄科, 陈宏泰, 等. 微纳电子技术, 2010, 47(2), 72.
35 Chen Q H, Fan J, Ma X H, et al. Infrared and Laser Engineering, 2017, 46(11), 3 (in Chinese).
陈琦鹤, 范杰, 马晓辉, 等. 红外与激光工程, 2017, 46(11), 3.
36 An Z F, Lin L, Xu H W, et al. Semiconductor Technology, 2011, 36(5), 2 (in Chinese).
安振峰, 林琳, 徐会武, 等. 半导体技术, 2011, 36(5), 2.
37 Ladugin M A, Marmalyuk A A. Quantum Electronics, 2019, 49(6), 529.
38 Zhang Y. Study on packaging technology of high power single emitter semi-conductor laser. Master's Thesis, Hebei University of Technology, China, 2013 (in Chinese).
张勇. 高功率单管半导体激光器封装技术研究. 硕士学位论文, 河北工业大学, 2013.
39 Ni Y X, Jing H Q, Kong J X, et al. Chinese Journal of Luminescence, 2016, 37(5), 562.
40 Qiao Z, Li X, Wang H, et al. Semiconductor Science and Technology, 2019, 34(5), 0550131.
41 Wu Y Z, Liu Y, Gao Q B, et al. China Science Paper, 2019, 14(12), 1363 (in Chinese).
吴胤禛, 柳祎, 高全宝, 等. 中国科技论文, 2019, 14(12), 1363.
42 Bai J G, Chen Z, Leisher P, et al. Proceedings of SPIE-The International Society for Optical Engineering, 2013, 8241(2), 30.
43 Kaul T, Erbert G, Maassdorf A, et al. Semiconductor Science and Technology, 2018, 33(3), 0350051.
44 Kaifuchi Y, Yoshida K, Yamagata Y, et al. In: High-Power Diode Laser Technology XVII. San Francisco, California, United States, 2019, pp. 10900.
45 Yamagata Y, Kaifuchi Y, Nogawa R, et al. In: High-Power Diode Laser Technology XVIII. San Francisco, California, United States, 2020, pp. 11262.
46 Crump P, Grimshaw M, Wang J, et al. In: Quantum Electronics and Laser Science Conference. Long Beach, California, United States, 2006, pp. 2.
47 Wang Z F, Yang G W, Wu J Y, et al. Acta Physica Sinica, 2016, 65(16), 114 (in Chinese).
王贞福, 杨国文, 吴建耀, 等. 物理学报, 2016, 65(16), 114.
48 Song Y F. Investigation on high power conversion efficiency laser diodes. Master's Thesis, University of Chinese Academy of Sciences, China, 2017 (in Chinese).
宋云菲. 高电光转换效率半导体激光芯片研究. 硕士学位论文, 中国科学院大学, 2017.
49 Qiu B C, Hu H, Wang W M, et al. Chinese Optics, 2018, 11(4), 590(in Chinese).
仇伯仓, 胡海, 汪卫敏, 等.中国光学, 2018, 11(4),590.
50 Yuan Q H, Jing H Q, Zhong L. Chinese Journal of Luminescence, 2020, 41(2), 194 (in Chinese).
袁庆贺, 井红旗, 仲莉. 发光学报, 2020, 41(2), 194.
51 Wang Z F, Yang G W. Chinese Journal of Lasers, 2016, 43(8), 277 (in Chinese).
王贞福, 杨国文. 中国激光, 2016, 43(8), 277.
52 Wang M P, Zhang P, Nie Z Q, et al. Acta Photonica Sinica, 2019, 48(9), 914002.
53 Wang L J, Peng H Y, Zhang J, et al. Infrared and Laser Engineering, 2017, 46(4), 9 (in Chinese).
王立军, 彭航宇, 张俊,等. 红外与激光工程, 2017, 46(4), 9.
54 Sverdlov B, Pfeiffer H U, Zibik E, et al. Proceedings of SPIE-the International Society for Optical Engineering, 2013, 8605, 860508.
20100023-655 Wang L J, Peng H Y, Zhang J. Chinese Journal of Optics, 2015, 8(4), 518 (in Chinese).
王立军, 彭航宇, 张俊. 中国光学, 2015, 8(4), 518.
56 Jun Z, Yong Yi C, Li Q, et al. Chinese Science Bulletin, 2017, 62(32), 3720.
57 Sun F Y. Investigation of high beam quality laser by external cavity combination technology. Ph.D. Thesis, University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, CAS), China, 2018 (in Chinese).
孙方圆. 高光束质量激光外腔合束技术研究. 博士学位论文, 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.
58 Wang X, Erbert G, Wenzl H, et al. IEEE Photonics Technology Letters, 2013, 25(2), 116.
59 Winterfeldt M, Crump P, Wenzel H, et al. Journal of Applied Physics, 2014, 116(6), 063103.
60 Winterfeldt M, Crump P, Knigge S, et al. IEEE Photonics Technology Letters, 2015, 27(17), 1810.
61 Zhao S, Lin Y, Zheng W, et al. In: Laser Components, Systems & Applications. Beijing, China, 2017, pp. 10457.
62 Ho Z, Hayakawa J, Shimura K, et al. In: International Semiconductor Laser Conference (ISLC). Santa Fe (US), 2018, pp. 229.
63 Zhao B Y, Jing H Q, Zhong L, et al. Chinese Journal of Luminescence, 2019, 40(11), 1417 (in Chinese).
赵碧瑶, 井红旗, 仲莉, 等.发光学报, 2019, 40(11), 1417.
64 Zhao B Y, Jing H Q, Zhong L, et al. Chinese Journal of Lasers, 2020, 47(1), 186 (in Chinese).
赵碧瑶, 井红旗, 仲莉, 等. 中国激光, 2020, 47(1), 186.
65 Yuan Q H, Jing H Q, Zhong L, et al. Chinese Journal of Lasers, 2020, 47(4), 61 (in Chinese).
袁庆贺, 井红旗, 仲莉, 等. 中国激光, 2020, 47(4), 61.
66 Zhou L. Research on anti catastrophic optical damage of high power semiconductor laser diodes. Ph.D. Thesis, Changchun University of Science and Technology, China, 2014 (in Chinese).
周路. 高功率半导体激光器抗COD关键技术研究. 博士学位论文, 长春理工大学, 2014.
67 Liu R K, Wang C C, Li S S, et al. Electro-Optic Technology Application, 2019, 34(6), 1 (in Chinese).
刘瑞科, 王超臣, 李森森, 等. 光电技术应用, 2019, 34(6), 1.
68 Nie Z Q, Wang M P, Sun Y B, et al. Chinese Journal of Luminescence, 2019, 40(9), 1136 (in Chinese).
聂志强, 王明培, 孙玉博, 等. 发光学报, 2019, 40(9), 1136.
69 Deng Z, Shen J, Dai W, et al. Journal of Engineering Thermophysics, 2017, 38(7), 1422 (in Chinese).
邓增, 沈俊, 戴巍, 等. 工程热物理学报, 2017, 38(7), 1422.
70 Fan S Q. Laser Journal, 2018, 39(2), 14 (in Chinese).
范嗣强. 激光杂志, 2018, 39(2), 14.
71 Dai W, Li J Q, Cao J, et al. Journal of Optoelectronics Laser, 2019, 30(3), 227 (in Chinese).
戴玮, 李嘉强, 曹剑, 等. 光电子·激光, 2019, 30(3), 227.
72 Yao N, Bo B X, Liu R Z, et al. Chinese Journal of Luminescence, 2020, 41(4), 442 (in Chinese).
么娜, 薄报学, 刘荣战, 等. 发光学报, 2020, 41(4), 442.
73 Ni Y X, Jing H Q, Kong J X, et al. Chinese Journal of Lasers, 2018, 45(1), 13 (in Chinese).
倪羽茜, 井红旗, 孔金霞, 等.中国激光, 2018, 45(1), 13.
74 Wang X, Qu Y, Gao T, et al. Semiconductor Optoelectronics, 2014, 35(6), 1013 (in Chinese).
王鑫, 曲轶, 高婷, 等. 半导体光电, 2014, 35(6), 1013.
75 Liu L. The study on thin film of 980 nm semiconductor laser. Master's Thesis, Changchun University of Science and Technology, China, 2013 (in Chinese).
刘磊. 980 nm半导体激光器腔面膜研究. 硕士学位论文, 长春理工大学, 2013.
76 He X, Cui B F, Liu M H, et al. Laser Infrared, 2016, 46(7), 805 (in Chinese).
何新, 崔碧峰, 刘梦涵, 等. 激光与红外, 2016, 46(7), 805.
77 Fomin E, Bondarev A, Slipchenko S, et al. Journal of Physics Conference Series, 2019, 1400, 055029.
78 Li Y. Structure design and epitaxy growth of high power semiconductor laser diodes emitting at 808 nm and 905 nm. Master's Thesis, Beijing University of Technology, China, 2016 (in Chinese).
李岩. 808 nm、905 nm高功率半导体激光器结构设计及外延生长. 硕士学位论文, 北京工业大学, 2016.
79 Yang H W, Huang K, Chen H T, et al. Micronanoelectronic Technology, 2010, 47(2), 1 (in Chinese).
杨红伟, 黄科, 陈宏泰, 等. 微纳电子技术, 2010, 47(2), 1.
80 Li J J, Cui B F, Deng J, et al. Chinese Journal of Lasers, 2013, 40(11), 57 (in Chinese).
李建军, 崔碧峰, 邓军, 等. 中国激光, 2013, 40(11), 57.
81 Bao L, Bai J, Price K, et al. In: Conference on High-Power Diode Laser Technology and Applications XI. San Francisco, CA, 2013, pp. 8605.
82 Yamagata Y, Yamada Y, Kaifuchi Y, et al. In: High Power Diode Lasers & Systems Conference. Scottish Chapter IEEE Photon Soc, Coventry, UK, 2015, pp. 8.
[1] 张乐, 周天元, 陈浩, 杨浩, 张其土, 宋波, 汪正平. Nd∶YAG激光透明陶瓷的研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 41-50.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed