Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 41-50    https://doi.org/10.11896/j.issn.1005-023X.2017.013.006
  材料综述 |
Nd∶YAG激光透明陶瓷的研究进展*
张乐1,2, 周天元3, 陈浩1, 杨浩1, 张其土3, 宋波2, 汪正平2
1 江苏师范大学物理与电子工程学院,江苏省先进激光材料与器件重点实验室,徐州 221116;
2 佐治亚理工学院材料科学与工程学院,亚特兰大 30332;
3 南京工业大学材料科学与工程学院,南京 210009
Advances in Transparent Nd∶YAG Laser Ceramics
ZHANG Le1,2, ZHOU Tianyuan3, CHEN Hao1, YANG Hao1, ZHANG Qitu3, SONG Bo2, WONG Chingping2
1 Jiangsu Provincial Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116;
2 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta 30332;
3 College of Materials Science and Engineering, Nanjing Technological University,Nanjing 210009
下载:  全 文 ( PDF ) ( 1518KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为新一代固体激光增益介质,Nd∶YAG透明陶瓷以容易制造、成本低、易于实现大尺寸生产等优势,正逐步取代单晶和玻璃材料,应用前景十分广阔。从Nd∶YAG透明陶瓷光学质量的提升、激光输出特性以及实现Nd∶YAG透明陶瓷高功率激光输出3个方面,分别回顾并总结了我国、日本、美国、欧洲和俄罗斯关于Nd∶YAG激光透明陶瓷的研究进展,并概述了我国及日本关于复合结构及共掺杂Nd∶YAG透明陶瓷的发展情况。最后总结并展望了当前Nd∶YAG激光透明陶瓷的发展趋势和存在的主要问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张乐
周天元
陈浩
杨浩
张其土
宋波
汪正平
关键词:  Nd∶YAG透明陶瓷  透过率  阈值  斜率效率  输出功率    
Abstract: As a new generation of solid state laser gain media, Nd∶YAG ceramics are now gradually substituting their single crystal or glass counterparts, owing to its advantages such as easy fabricated, cost-effectiveness and flexibility in fabricating with large size, etc. It has very considerable application prospect. In this paper, from three aspects including optical quality optimization of Nd∶YAG transparent ceramics, laser characteristic and the achievement of high power Nd∶YAG ceramic laser output, the research progress of Nd∶YAG transparent ceramics in China, Japan, America, Europe and Russia are introduced, respectively. The development of composite as well as co-doped Nd∶YAG ceramics in China and Japan are also introduced. Finally, the tendency and the main hinders for the development of transparent Nd∶YAG ceramics are summarized.
Key words:  Nd∶YAG transparent ceramic    transmittance    threshold    slope efficiency    output power
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  O613  
基金资助: *江苏省普通高校学术学位研究生科研创新计划(KYZZ16_0231); 国家自然科学基金(51402133;51202111); 江苏高校优势学科建设工程资助项目(PAPD);徐州市科技创新专项(KC16GZ014;KC16HQ236;KC16HQ237)
通讯作者:  陈浩:通讯作者,男,1976年生,副教授,主要从事激光技术方面的研究 E-mail:chenhao@jsnu.edu.cn   
作者简介:  张乐:男,1988年生,副教授,主要从事陶瓷材料的研究 E-mail:njutzl@163.com
引用本文:    
张乐, 周天元, 陈浩, 杨浩, 张其土, 宋波, 汪正平. Nd∶YAG激光透明陶瓷的研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 41-50.
ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics. Materials Reports, 2017, 31(13): 41-50.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.006  或          http://www.mater-rep.com/CN/Y2017/V31/I13/41
1 Li J, Pan Y, Zeng Y, et al. The history, development, and future prospects for laser ceramics: A review[J]. Int J Refractory Metals Hard Mater,2013,39:44.
2 Wang S F, Zhang J, Luo D W, et al. Transparent ceramics: Processing, materials and applications[J]. Prog Solid State Chem,2013,41(1-2):20.
3 Ikesue A, Aung Y L. Ceramic laser materials[J]. Nat Photon,2008,2(12):721.
4 Ikesue A, Aung Y L, Taira T, et al. Progress in ceramic lasers[J]. Annual Rev Mater Res, 2006,36(1):397.
5 Kuklja M M. Defects in yttrium aluminium perovskite and garnet crystals: Atomistic study[J]. J Phys: Condensed Matter,2000,12(13):2953.
6 Li C S, Zhang Y J, Zhang J D, et al. Progress of research on preparation and application of yttrium aluminum garnet fibers[J]. Bull Chinese Ceram Soc,2009,28(1):132(in Chinese).
李呈顺, 张玉军, 张景德,等. 钇铝石榴石纤维的制备和应用研究进[J]. 硅酸盐通报, 2009, 28(1): 132.
7 Geusic J E, Marcos H M, Van Uitert L G. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets[J]. Appl Phys Lett,1964,4(10):182.
8 Maître A, Sallé C, Boulesteix R, et al. Effect of silica on the reactive sintering of polycrystalline Nd∶YAG ceramics[J]. J Am Ceram Soc,2008,91(2):406.
9 Kopf D, Weingarten K J, Kärtner F X, et al. Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry-Perot saturable absorber[J]. Opt Lett,1995,20(10):1169.
10 Sekita M, Haneda H, Yanagitani T, et al. Induced emission cross section of Nd∶Y3Al5O12 ceramics[J]. J Appl Phys,1990,67(1):453.
11 Sekita M, Haneda H, Shirasaki S, et al. Optical spectra of undoped and rare-earth-(=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12[J]. J Appl Phys,1991,69(6):3709.
12 Ikesue A, Furusato I, Kamata K. Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method[J]. J Am Ceram Soc,1995,78(1):225.
13 Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. J Am Ceram Soc,1995,78(4):1033.
14 Ikesue A, Kamata K, Yoshida K. Synthesis of Nd3+,Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers[J]. J Am Ceram Soc,1995,78:2545.
15 Ikesue A, Yoshida K, Yamamoto T, et al. Optical scattering centers in polycrystalline Nd∶YAG laser[J]. J Am Ceram Soc,1997,80(6):1517.
16 Ikesue A, Yoshida K. Influence of pore volume on laser performance of Nd∶YAG ceramics[J]. J Mater Sci,1999,34(6):1189.
17 Yanagitani T, Yagi H, Hiro Y. Production of fine powder of yttrium aluminum garnet:Jpn, 10-101411[P]. 1998.
18 Yanagitani T, Yagi H, Ichikawa M. Production of yttrium-aluminum-garnet fine powder:Jpn,10-101333[P].1998.
19 Jianren Lu, Jie Song, Mahendra Prabhu, et al. High-power Nd∶Y3Al5O12 ceramic laser[J]. Jpn J Appl Phys,2000,39(10B):L1048.
20 Lu J, Murai T, Takaichi K, et al. 72 W Nd∶Y3Al5O12 ceramic laser[J]. Appl Phys Lett,2001, 78(23):3586.
21 Lu J, Murai T, Takaichi K, et al. Development of Nd∶YAG cera-mic lasers[J]. Adv Solid-State Lasers,2002,68:507.
22 Lu J, Ueda K I, Yagi H, et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—A new generation of solid state laser and optical materials[J]. J Alloys Compd,2002,341(1-2):220.
23 Ikesue A, Aung Y L. Synthesis and performance of advanced cramic lsers[J]. J Am Ceram Soc,2006,89(6):1936.
24 Otsuka K, Ohtomo T. Polarization properties of laser-diode-pumped micro-grained Nd∶YAG ceramic lasers[J]. Laser Phys Lett,2008,5(9):659.
25 Omatsu T, Minassian A, Damzen M J. Passive Q-switching of a dio-de-side-pumped Nd doped 1.3 μm ceramic YAG bounce laser[J]. Opt Commun,2009,282(24):4784.
26 Kaminskii A A, Akchurin M S, Alshits V I, et al. New data on the physical properties of Y3Al5O12-based nanocrystalline laser ceramics[J]. Crystallography Rep,2003,48(3):515.
27 Kaminskii A A, Kravchenko V B, Kopylov Y L, et al. Novel polycrystalline laser material: Nd3+∶Y3Al5O12 ceramics fabricated by the high-pressure colloidal slip-casting (HPCSC) method[J]. Phys Status Solidi (a),2007,204(7):2411.
28 Kopylov Y L, Kravchenko V B, Bagayev S N, et al. Development of Nd3+∶Y3Al5O12 laser ceramics by high-pressure colloidal slip-cas-ting (HPCSC) method[J]. Opt Mater,2009,31(5): 707.
29 Bagayev S N, Osipov V V, Solomonov V I, et al. Fabrication of Nd3+∶YAG laser ceramics with various approaches[J]. Opt Mater,2012,34(8):1482.
30 Yavetskiy R P, Baumer V N, Doroshenko A G, et al. Phase formation and densification peculiarities of Y3Al5O12∶Nd3+ during reactive sintering[J]. J Cryst Growth,2014,401(23):839.
31 Vatnik S M, Osipov V V, Luk′yashin K E, et al. Multiwatt lasing of Nd∶YAG laser ceramics containing 0.8% and 1% of Nd[J]. Quantum Electron,2014,44(6):585.
32 Sokol M, Kalabukhov S, Kasiyan V, et al. Functional properties of Nd∶YAG polycrystalline ceramics processed by high-pressure spark plasma sintering (HPSPS)[J]. J Am Ceram Soc, 2016,99(3):802.
33 Rabinovitch Y, Tétard D, Faucher M D, et al. Transparent polycrystalline neodymium doped YAG: Synthesis parameters, laser efficiency[J]. Opt Mater,2003,24(1-2):345.
34 Sallé C, Maître A, Baumard J F, et al. A first approach of silica effect on the sintering of Nd∶YAG[J]. Opt Rev,2007,14(4):169.
35 Boulesteix R, Maître A, Baumard J F, et al. The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: Implications for sintering mechanisms[J]. J Eur Ceram Soc,2009,29(12):2517.
36 Boulesteix R, Maître A, Baumard J F, et al. Mechanism of the li-quid-phase sintering for Nd∶YAG ceramics[J]. Opt Mater,2009,31(5):711.
37 Boulesteix R, Maître A, Baumard J F, et al. Quantitative characte-rization of pores in transparent ceramics by coupling electron microscopy and confocal laser scanning microscopy[J]. Mater Lett,2010,64(16):1854.
38 Boulesteix R, Maître A, Chrétien L, et al. Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: Toward the origin of residual porosity affecting the transparency[J]. J Am Ceram Soc,2013,96(6):1724.
39 Chrétien L, Bonnet L, Boulesteix R, et al. Influence of hot isostatic pressing on sintering trajectory and optical properties of transparent Nd∶YAG ceramics[J]. J Eur Ceram Soc,2016, 36(8):2035.
40 Suárez M, Fernández A, Menéndez J L, et al. Hot isostatic pressing of optically active Nd∶YAG powders doped by a colloidal processing route[J]. J Eur Ceram Soc,2010,30(6): 1489.
41 Lapucci A, Ciofini M, Pucci M, et al. High efficiency, diode pumped 170 W Nd∶YAG ceramic slab laser[J]. J Eur Opt Soc-Rapid Publications,2011,6:11047.
42 Lapucci A, Ciofini M, Vannoni M, et al. High efficiency, diode pumped Nd∶YAG ceramics slab laser with 230 W continuous-wave output power[J]. Appl Opt,2012,51(18):4224.
43 Salamu G, Jipa F, Zamfirescu M, et al. Laser emission from diode-pumped Nd∶YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique[J]. Opt Express, 2014,22(5):5177.
44 Salamu G,Jipa F,Zamfirescu M,et al. Watt-level output power ope-ration from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd∶YAG by direct femtosecond-laser wri-ting[J]. IEEE Photon J,2016,8(1):1.
45 Dutta S, Gazza G. Hot pressing ceramic oxides to transparency by heating in isothermal increments,USA:3767745[P].1973.
46 Lee S, Kochawattana S, Messing G L, et al. Solid-state reactive sintering of transparent polycrystalline Nd∶YAG ceramics[J]. J Am Ceram Soc,2006,89(6):1945.
47 Kochawattana S, Stevenson A, Lee S H, et al. Sintering and grain growth in SiO2 doped Nd∶YAG[J]. J Eur Ceram Soc,2008,28(7):1527.
48 Stevenson A J, Li X, Martinez M A, et al. Effect of SiO2 on densification and microstructure development in Nd∶YAG transparent ceramics[J]. J Am Ceram Soc,2011,94(5):1380.
49 Lee S H, Kupp E R, Stevenson A J, et al. Hot isostatic pressing of transparent Nd∶YAG ceramics[J]. J Am Ceram Soc,2009,92(7):1456.
50 Stevenson A J, Kupp E R, Messing G L. Low temperature, tran-sient liquid phase sintering of B2O3-SiO2-doped Nd∶YAG transpa-rent ceramics[J]. J Mater Res,2011,26(9):1151.
51 Pan Y B, Xu J, Wu Y S,et al. Fabrication and laser output of Nd∶YAG transparent ceramic[J]. J Inorg Mater,2006,21(5):1278(in Chinese).
潘裕柏, 徐军, 吴玉松, 等. Nd∶YAG透明陶瓷的制备与激光输出[J]. 无机材料学报, 2006,21(5):1278.
52 Chen Y H, Zhou Y, Zong N, et al. Realization of 10.0 W laser output using domestic Nd∶YAG transparent ceramic[J]. Chinese J Lasers, 2007, 34(5): 660 (in Chinese).
陈亚辉, 周勇, 宗楠, 等. 国产Nd∶YAG透明陶瓷实现10.0W激光输出[J]. 中国激光, 2007, 34(5): 660.
53 Liu W, Li J, Jiang B, et al. 2.44KW laser output of Nd∶YAG ceramic slab fabricated by a solid-state reactive sintering[J]. J Alloys Compd,2012,538:258.
54 Liu W, Zhang D, Li J, et al. High power single wavelength ceramic Nd∶YAG laser at 1 116 nm[J]. Opt Laser Technol,2013,46:139.
55 Huang Y, Jiang D, Zhang J, et al. Sintering of transparent Nd∶YAG ceramics in oxygen atmosphere[J]. J Rare Earths,2013,31(2):153.
56 Li J, Liu J, Liu B, et al. Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd∶YAG transparent ceramics[J]. J Eur Ceram Soc,2014,34(10):2497.
57 Yin R, Li J, Dong M, et al. Fabrication of Nd∶YAG transparent ceramics by non-aqueous gelcasting and vacuum sintering[J]. J Eur Ceram Soc,2016,36(10):2543.
58 Liu W B. Preparation, microstructure and laser properties of Nd∶YAG transparent ceramic[D]. Shanghai: Shanghai Jiao Tong University, 2012 (in Chinese).
刘文斌. Nd∶YAG透明陶瓷的制备、显微结构及激光性能研究[D].上海: 上海交通大学, 2012.
59 曹永革, 黄秋凤, 郭旺,等. 一种稀土掺杂钇铝石榴石透明陶瓷的制备方法:中国,CN101985397A[P].2011.
60 曹永革, 郭旺, 黄秋凤,等. 一种透明多晶Re∶YAG陶瓷的制备方法:中国,CN101985398A[P].2011.
61 Li C Y, Bo Y, Wang B S, et al. A kilowatt level diode-side-pumped QCW Nd∶YAG ceramic laser[J]. Opt Commun,2010,283(24):5145.
62 Yang H, Qin X, Zhang J, et al. Fabrication of Nd∶YAG transpa-rent ceramics with both TEOS and MgO additives[J]. J Alloys Compd,2011,509(17):5274.
63 Yang H, Qin X, Zhang J, et al. The effect of MgO and SiO2 codo-ping on the properties of Nd∶YAG transparent ceramic[J]. Opt Mater,2012,34(6):940.
64 Zhang W, Lu T, Ma B, et al. Improvement of optical properties of Nd∶YAG transparent ceramics by post-annealing and post hot isostatic pressing[J]. Opt Mater,2013,35(12):2405.
65 Chen J, Li J, Xu J, et al. 4350W quasi-continuous-wave operation of a diode face-pumped ceramic Nd∶YAG slab laser[J]. Opt Laser Technol,2014,63:50.
66 Zhang L, Li Y, Li X, et al. Characterization of spray granulated Nd∶YAG particles for transparent ceramics[J]. J Alloys Compd,2015,639:244.
67 Zhang X, Fan G, Lu W, et al. Effect of the spark plasma sintering parameters, LiF additive, and Nd dopant on the microwave dielectric and optical properties of transparent YAG ceramics[J]. J Eur Ceram Soc,2016,36(11):2767.
68 Wei P F, Gan H B, Yu Y, et al. End pumped Nd∶YAG ceramics laser emitting at 1.83 μm[J]. High Power Laser Particle Beams,2017(4):27(in Chinese).
尉鹏飞, 甘海波, 俞叶,等. 端面抽运Nd∶YAG陶瓷1.83 μm激光[J]. 强激光与粒子束,2017(4):27.
69 Ma B, Wang B, Zhang W, et al. Promotion of powder crystallinity and its influence on the properties of Nd∶YAG transparent ceramics[J]. Opt Mater,2017,64:384.
70 Yang Q H. The research history and recent progress of laser transparent ceramics[J]. J Chinese Ceram Soc, 2009, 37(3): 476 (in Chinese).
杨秋红. 激光透明陶瓷研究的历史与最新进展[J]. 硅酸盐学报, 2009, 37(3): 476.
71 Yagi H, Yanagitani T, Ueda K I. Nd3+∶Y3Al5O12 laser ceramics: Flashlamp pumped laser operation with a UV cut filter[J]. J Alloys Compd,2006,421(1-2):195.
72 Yagi H, Takaichi K, Hiwada K, et al. Side-pumped Nd3+∶Y3Al5O12 composite ceramic laser[J]. Jpn J Appl Phys,2006,45(7):L207.
73 Samuel P, Yanagitani T, Yagi H, et al. Efficient energy transfer between Ce3+ and Nd3+ in cerium codoped Nd∶YAG laser quality transparent ceramics[J]. J Alloys Compd,2010, 507(2):475.
74 Samuel P, Kumar G A, Takagimi Y, et al. Efficient energy transfer between Ce3+/Cr3+ and Nd3+ ions in transparent Nd/Ce/Cr∶YAG ceramics[J]. Opt Mater,2011,34(1):303.
75 Fujioka K, Saiki T, Motokoshi S, et al. Parameter mapping survey on optimized sensitizing effect of Ce/Cr/Nd∶YAG material for solar-pumped solid-state lasers[J]. J Lumin,2013,143: 10.
76 Honda Y, Motokoshi S, Jitsuno T, et al. Temperature dependence of optical properties in Nd/ Cr∶YAG materials[J]. J Lumin,2014,148:342.
77 Lim H H, Taira T. Sub-nanosecond laser induced air-breakdown with giant-pulse duration tuned Nd∶YAG ceramic micro-laser by ca-vity-length control[J]. Opt Express,2017,25(6): 6302.
78 Saiki T, Fujiwara N, Matsuoka N, et al. Amplification properties of KW Nd/Cr∶YAG ceramic multi-stage active-mirror laser using white-light pump source at high temperatures[J]. Opt Commun,2017,387:316.
79 Li J, Wu Y, Pan Y, et al. Laminar-structured YAGNd∶YAGYAG transparent ceramics for solid-state lasers[J]. Int J Appl Ceram Technol,2008,5(4):360.
80 Liu W, Zeng Y, Li J, et al. Sintering and laser behavior of compo-site YAG/Nd∶YAG/YAG transparent ceramics[J]. J Alloys Compd,2012,527:66.
81 Tang F, Cao Y, Huang J, et al. Multilayer YAG/Re∶YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method[J]. J Eur Ceram Soc,2012,32(16):3995.
82 Ge L, Li J, Zhou Z, et al. Fabrication of composite YAG/Nd∶YAG/YAG transparent ceramics for planar waveguide laser[J]. Opt Mater Express,2014,4(5):1042.
83 Ma C, Tang F, Lin H, et al. Fabrication and planar waveguide laser behavior of YAG/Nd∶YAG/YAG composite ceramics by tape cas-ting[J]. J Alloys Compd,2015,640:317.
84 Li J, Wu Y, Pan Y, et al. Fabrication of Cr4+,Nd3+∶YAG transparent ceramics for self-Q-switched laser[J]. J Non-Cryst Solids,2006,352(23-25):2404.
85 Li Y, Zhou S, Lin H, et al. Intense 1064nm emission by the efficient energy transfer from Ce3+ to Nd3+ in Ce/Nd co-doped YAG transparent ceramics[J]. Opt Mater,2010,32(9):1223.
86 Lu Y, Shen Z, Lu J, et al. Pumping efficiency of solar-pumped Cr/Nd∶YAG ceramic rod with fresnel lens[J]. J Russian Laser Res,2013,34(2):120.
87 Ren G G, Huang Y N. Diode pumped solid-state laser stride forward 100 kW[J]. Laser Infrared,2006,36(8):617(in Chinese).
任国光, 黄裕年. 二极管抽运固体激光器迈向100kW[J]. 激光与红外, 2006(8): 617.
88 Qin S, Zou J P. Research progress of Nd∶YAG transparent ceramic[J]. Ceram Sci Art,2012(7):52(in Chinese).
覃烁, 邹建平. Nd∶YAG透明陶瓷的研究进展[J]. 陶瓷科学与艺术,2012(7):52.
89 Sanghera J, Kim W, Villalobos G, et al. Ceramic laser materials[J]. Materials,2012,5(12): 258.
[1] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed