Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 33-40    https://doi.org/10.11896/j.issn.1005-023X.2017.013.005
  材料综述 |
钙钛矿太阳电池的理论性能研究进展*
戎小莹, 金慧娇, 张天, 郭丹, 赵昆越, 田汉民
河北工业大学电子信息工程学院,天津市电子材料与器件重点实验室,天津 300400
Research Progress of Theoretical Performance of Perovskite-based Solar Cells
RONG Xiaoying, JIN Huijiao, ZHANG Tian, GUO Dan, ZHAO Kunyue, TIAN Hanmin
Tianjin Key Laboratory of Electronic Materials and Device, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300400
下载:  全 文 ( PDF ) ( 1851KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿太阳电池近年来发展迅速,其电池最高转换效率已突破22%,有望成为改变现有光伏产业格局的重要新型太阳电池。理论分析钙钛矿太阳电池内部机理是进一步提高电池性能的重要基础。主要介绍了现阶段研究者对钙钛矿太阳电池的不同结构、不同功能层之间的电学参数、最优尺寸等方面的最新理论研究进展。同时针对电池的稳定性,介绍了目前各研究者对新型空穴传输层材料的探索。还对钙钛矿吸光层的电学性质做了理论分析,为进一步提高电池的性能提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戎小莹
金慧娇
张天
郭丹
赵昆越
田汉民
关键词:  钙钛矿太阳电池  机理分析  器件仿真  结构优化    
Abstract: Perovskite-based solar cells (PSCs) that achieved notable progress in recent years (the highest power conversion efficiency is 22%) have the potential to play an important role in future photovoltaic industry. The theoretical analysis of perovskite-based solar cells is important to further performance improvement. This review mainly introduces the latest theoretical researches of perovskite-type solar cells on structures, electrical parameters of functional layers and optimum thicknesses. The theoretical researches of absorbing layer electrical properties based on cells with new hole transport material layer are introduced in view of cell′s stability especially. This paper aims to help researchers to understand the internal mechanism of perovskite solar cells by summarizing these theoretical researches.
Key words:  perovskite solar cell    mechanism analysis    device simulation    structure optimization
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TM914.4  
基金资助: *中国博士后科学基金(2015M581282);河北省留学人员择优资助项目(C2015003040)
通讯作者:  田汉民:通讯作者,男,1975年生,博士,副教授,主要从事光电功能薄膜,太阳电池器件物理方面的研究 E-mail:tianhanmin@hebut.edu.cn   
作者简介:  戎小莹:男,1990年生,硕士研究生,主要从事新型电子材料与器件,钙钛矿太阳电池,半导体器件仿真研究 E-mail:rongxiao-yingVIP@126.com
引用本文:    
戎小莹, 金慧娇, 张天, 郭丹, 赵昆越, 田汉民. 钙钛矿太阳电池的理论性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 33-40.
RONG Xiaoying, JIN Huijiao, ZHANG Tian, GUO Dan, ZHAO Kunyue, TIAN Hanmin. Research Progress of Theoretical Performance of Perovskite-based Solar Cells. Materials Reports, 2017, 31(13): 33-40.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.005  或          http://www.mater-rep.com/CN/Y2017/V31/I13/33
1 NREL Efficiency Chart[DB/OL].http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
2 Shen Q, Ogomi Y, Chang J, et al. Optical absorption charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances[J]. J Mater Chem A,2015, 3(17):9308.
3 Roldán-Carmona C, Malinkiewicz O, et al. Flexible high efficiency perovskite solar cells[J]. Energy Environmental Sci,2014, 7(7):994.
4 Eperon G E, et al. Neutral color semitransparent microstructured perovskite solar cells[J]. Acs Nano,2014,8(1):591.
5 Snaith H J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells[J]. J Phys Chem Lett,2013,4(21):3623.
6 Pedesseau L, Kepenekian M, Sapori D, et al. Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells[J].Proceed SPIE,2016,9743: 97430N.
7 Rolland A, Pedesseau L, Beck A, et al. Computational design of high performance hybrid perovskite on silicon tandem solar cells[J]. Physics, 2015,106(24):000057.
8 Weber D. CH3NH3PbX3, ein Pb(Ⅱ)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb(Ⅱ)-system with cubic perovskite structure[J]. Zeitschrift Für Naturforschung B,2014,33(12):1443.
9 Xing G, Mathews N, Sun S, et al. Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science,2013,342(6156):344.
10 Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science,2013,342(6156): 341.
11 Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environmental Sci, 2014, 7(3):982.
12 Yin W J, Shi T, Yan Y, et al. Unusual defect physics in CH3NH3-PbI3 perovskite solar cell absorber[J]. Appl Phys Lett,2014,104(6):063903.
13 Kim J, et al. The role of intrinsic defects in methylammonium lead iodide perovskite[J]. J Phys Chem Lett,2014,5(8):1312.
14 Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science,2012, 338(6107):643.
15 Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 he-terojunction solar cells[J]. J Am Chem Soc,2012,134(42):17396.
16 Dong J, Shi J, Li D, et al. Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell[J]. Appl Phys Lett, 2015,107(7):073507.
17 Tseng Z L, Chiang C H, Wu C G, et al. Surface engineering of ZnO thin film for high efficiency planar perovskite solar cells.[J]. Sci Rep,2015,5:13211.
18 Zuo F, Williams S T, Liang P W, et al. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells[J]. Adv Mater,2014, 26(37):6454.
19 Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep,2012, 2(8):591.
20 Wu X, Liu P, Ma L, et al. Two-dimensional modeling of TiO2, nanowire based organic-inorganic hybrid perovskite solar cells[J]. Solar Energy Mater Solar Cells, 2016, 152:111.
21 Jaegermann W, Mayer T, Schwanitz K, et al. Electronic interaction of acetonitrile and Ru (N3)-dye on nano-crystalline TiO2 investigated by means of synchrotron induced photoelectron spectroscopy[J]. Electrochem Soc,2006(2): 94.
22 Bisquert J, Fabregat-Santiago F, Mora-Seró I, et al. A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors[J]. Inorg Chim Acta,2008,361(3):684.
23 Henderson M A, Epling W S, et al. Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface: Molecular and dissociative channels[J]. J Phys Chem B,1999,103(25):5328.
24 Huang L, et al. Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation[J]. Solar Energy Mater Solar Cells,2016,157:1038.
25 Ke W, Fang G, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells[J]. Nat Commun,2015,6:6700.
26 Minemoto T, Murata M. Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells[J]. J Appl Phys,2014,116(5):054505.
27 Liu F, Zhu J, Wei J, et al. Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells[J]. Appl Phys Lett,2014, 104(25):253508.
28 Minemoto T, Murata M. Theoretical analysis on effect of band offsets in perovskite solar cells[J]. Solar Energy Mater Solar Cells,2015,133(133):8.
29 Taghavi M J, Houshmand M, et al. Modeling of optical losses in perovskite solar cells[J]. Superlattices Microstruct,2016,97:424.
30 Kim H S, Park N G. Parameters affecting I-V hysteresis of CH3-NH3PbI3 perovskite solar cells: Effects of perovskite crystal size and mesoporous TiO2 layer[J]. J Phys Chem Lett,2014, 5(17):2927.
31 Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat Photon,2014,8(2):133.
32 Zhang Q, Dandeneau C S, Zhou X, et al. ZnO Nanostructures for dye-sensitized solar cells[J]. Adv Mater,2009, 21(41):4087.
33 Zhang A, Chen Y, Yan J, et al. Optimal design and simulation of high-performance organic-metal halide perovskite solar cells[J]. IEEE J Quantum Electron,2016,52(6):1.
34 Anaraki E H, Kermanpur A, Steier L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy Environmental Sci,2016,9(10):1.
35 Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Scie-nce,2017, 355(6326):722.
36 Zheng H, Tachibana Y, Kalantar-zadeh K, et al. Dye-sensitized solar cells based on WO3[J]. Langmuir Acs J Surf Colloids,2010,26(24):19148.
37 Nikolay T, Kim D K, Yong S M, et al. One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells[J]. J Alloys Compd,2013, 547(2):113.
38 Yan W, Ye S, Li Y, et al. Hole-transporting materials in inverted planar perovskite solar cells[J]. Adv Energy Mater,2016,6(17):1.
39 Alnuaimi A, Almansouri I, Nayfeh A, et al. Effect of mobility and band structure of hole transport layer in planar heterojunction pe-rovskite solar cells using 2D TCAD simulation[J]. J Comput Electron,2016,15(3):1110.
40 Abate A, et al. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Phys Chem Chem Phys,2013,15(7):2572.
41 Zhou Q, Jiao D, Fu K, et al. Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells[J]. Solar Energy,2016,123:51.
42 Jia X, Shen L, Liu Y, et al. Performance improvement of inverted polymer solar cells thermally evaporating CuI as an anode buffer la-yer[J]. Synth Met,2014, 198(5):1.
43 Li M H, Shen P S, Wang K C, et al. Inorganic p-type contact materials for perovskite-based solar cells[J]. J Mater Chem A Mater Energy Sustainability, 2015,3(17):9011.
44 Minemoto T, Murata M. Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation[J]. Curr Appl Phys,2014, 14(11):1428.
45 Kaiser I, Ernst K, Fischer C H, et al. The eta-solar cell with CuInS2 : A photovoltaic cell concept using an extremely thin absorber (eta)[J]. Solar Energy Mater Solar Cells,2001, 67(1):89.
46 Gavrilov S A, Dronov A A, Shevyakov V I, et al. Ways to increase the efficiency of solar cells with extremely thin absorption layers[J]. Nanotechnol Russia,2009,4(3):237.
47 Wang M, Grätzel C, Moon S J, et al. Surface design in solid-state dye sensitized solar cells: Effects of zwitterionic Co-adsorbents on photovoltaic performance[J]. Adv Funct Mater,2009,19(13):2163.
48 Hossain M I, Alharbi F H, Tabet N, et al. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells[J]. Solar Energy,2015,120:370.
49 Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature,2013, 499(7458):316.
50 Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nat Commun, 2014,5:3834.
51 Subbiah A S, et al. Inorganic hole conducting layers for perovskite-based solar cells[J]. J Phys Chem Lett,2014,5(10):1748.
52 Christians J A, Fung R C, et al. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide[J]. J Am Chem Soc,2013, 136(2):758.
53 Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science,2014, 345(6194):295.
54 Kim B S, Kim T M, Choi M S, et al. Fully vacuum-processed pe-rovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers[J]. Org Electron,2015, 17:102.
55 Mitzi D B, et al. Conducting tin halides with a layered organic-based perovskite structure[J]. Nature,1994, 369:467.
56 Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc,2009, 131(17):6050.
57 Boix P P, Nonomura K, Mathews N, et al. Current progress and future perspectives for organic/inorganic perovskite solar cells[J]. Mater Today, 2014,17(1):16.
58 Kazim S, Nazeeruddin M K, Grätzel M, et al. Perovskite as light harvester: A game changer in photovoltaics[J]. Angew Chem Int Ed,2014, 53(11):2812.
59 Gao P, Grätzel M, Nazeeruddin M K, et al. Organohalide lead pe-rovskites for photovoltaic applications[J]. Energy Environmental Sci,2014,7(8): 2448.
60 Tanaka K, Takahashi T, Ban T, et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3[J]. Solid State Commun,2003, 127(9-10):619.
61 Chen W, Wu Y, Yue Y, et al. Efficient and stable large-area pe-rovskite solar cells with inorganic charge extraction layers[J]. Scie-nce,2015,350(6263):944.
62 Yang Z, Cai B, Zhou B, et al. An up-scalable approach to CH3NH3-PbI3 compact films for high-performance perovskite solar cells[J]. Nano Energy, 2015,15:670.
63 Razza S, Giacomo F D, et al. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process[J]. J Power Sources, 2014,277:286.
64 Liu M, et al. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature,2013, 501:395.
65 Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nat Mater,2014,13(9):897.
66 Chen C W, Kang H W, Hsiao S Y, et al. Efficient and uniform planar-type perovskite solar cells by simple sequential bacuum deposition[J]. Adv Mater,2014,26(38):6647.
67 Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science,2016, 353(6294):58.
68 Suarez B, Gonzalez-Pedro V, Ripolles T S, et al. Recombination study of combined halides (Cl, Br, I) perovskite solar cells[J]. J Phys Chem Lett,2014, 5(10):1628.
69 Yang W, Yao Y, et al. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective[J]. J Appl Phys,2015,117(15):155504.
70 Lee J W, Seol D J, Cho A N, et al. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3[J]. Adv Mater,2014, 26(29):4991.
71 Yang W S, Noh J H, Jeon N J, et al. High-performance photovol-taic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015,348(6240):1234.
72 Jacobsson T J, Correa-Baena J P, et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells[J]. Energy Environmental Sci,2016,9(5):1706.
73 Binek A, Hanusch F C, Docampo P, et al. Stabilization of the trigonal high-temperature phase of formamidinium lead iodide[J]. J Phys Chem Lett,2015,6(7):1249.
74 Koh T M, Fu K, Fang Y, et al. Formamidinium-containing metal-halide: An alternative material for near-IR absorption perovskite solar cells[J]. J Phys Chem C,2013,118(30): 16458.
75 Bi D, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites[J]. Sci Adv,2016,2(1):e1501170.
76 Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535):476.
77 Bush K A, Palmstrom A F, Yu Z J, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability[J]. Nat Energy, 2017,2:17009.
78 Ogomi Y, et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells cove-ring up to 1060 nm[J]. J Phys Chem Lett,2014,5(6):1004.
79 Noel N K, Stranks S D, Abate A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy Environ Sci, 2014,7(9):3061.
[1] 刘誉贵, 马育, 刘攀. 氨化与磺化改性橡胶混凝土机理及强度研究[J]. 材料导报, 2018, 32(18): 3142-3145.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed