Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 51-62    https://doi.org/10.11896/j.issn.1005-023X.2017.013.007
  材料综述 |
金属有机骨架材料在光催化反应中的应用研究进展*
王丽苹
曲靖师范学院化学与环境科学学院,曲靖 655011
Progress in Application of Metal-organic Frameworks in Photocatalytic Reactions
WANG Liping
College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011
下载:  全 文 ( PDF ) ( 2078KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环境问题和能源危机的是当今人类社会面临的两大重要问题。光催化技术被认为是解决环境问题和能源危机的有效途径之一。光催化技术利用的关键就是光催化材料的开发。金属有机骨架材料(Metal-organic frameworks, MOFs)是由金属或金属簇与有机配体构筑的一类具有周期性网络结构的新型多孔晶体材料,具有比表面积大、孔道结构规整、孔尺寸可调、催化活性位丰富等优点,被广泛应用于气体存储、气体分离、多相催化、半导体、仿生矿化等多个领域。近十几年来,众多科研工作者尝试将MOFs材料用于光催化反应,并取得了许多优秀的科研成果。尤其是近几年,MOFs在光催化领域的应用受到了越来越多科研工作者的关注。主要综述了近几年MOFs作为光催化剂在催化产氢、CO2还原、烷基化反应、有机物氧化、有机还原、交叉脱氢偶联反应和去除环境污染物等方面的应用研究进展,并对未来MOFs光催化材料的发展提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丽苹
关键词:  金属有机骨架材料  光催化  催化产氢  还原  氧化    
Abstract: Environmental problem and energy crisis are two important problems that human face today. Photocatalysis is considered to be one of the effective methods to solve environmental problem and energy crisis. Metal-organic frameworks (MOFs) are a new class of porous crystalline materials that are built from metal ion or metal cluster and organic ligand. Due to their high surface area, ordered pore structure, tunable pore size and rich active site, MOFs have been widely applied in gas storage and separation, he-terogeneous catalysis, semiconductors and biomimetic mineralization. Over the past decades, many researchers have tried to use MOFs as the photocatalysts for chemical reaction, and gained a number of outstanding achievements. Especially in recent years, the application of MOFs in photocatalysis has received more and more attention. In this work, MOFs as the photocatalysts for hydrogen production, CO2 reduction, alkylation reaction, oxidation and reduction of organic compounds, cross-dehydrogenative coupling reaction and removal of environmental pollutants are reviewed, and the development trend of MOFs photocatalysts are put forward.
Key words:  metal-organic frameworks    photocatalysis    hydrogen production    reduction    oxidation
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB34  
基金资助: *云南省应用基础研究计划项目(2013FZ108)
作者简介:  王丽苹:女,1982年生,博士,副教授,主要从事催化剂制备和有机合成方面研究 E-mail:wanglp_csu@163.com
引用本文:    
王丽苹. 金属有机骨架材料在光催化反应中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 51-62.
WANG Liping. Progress in Application of Metal-organic Frameworks in Photocatalytic Reactions. Materials Reports, 2017, 31(13): 51-62.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.007  或          http://www.mater-rep.com/CN/Y2017/V31/I13/51
1 Fujishima A, Honda K. Electrochemical photocatalysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37.
2 Rodriguez J, Puzenat E, Thivel P X. From solar photocatalysis to fuel-cell: A hydrogen supply chain[J]. J Environ Chem Eng,2016,4(3):3001.
3 Chattopadhyay A, Chatterjee P, Chakraborty T. Photo-oxidation of acetone to formic acid in synthetic air and its atmospheric implication[J]. J Phys Chem A,2015,119(29):8146.
4 Lester Y, Sharpless C M, Mamane H, et al. Production of photo-oxidants by dissolved organic matter during UV water treatment[J]. Environ Sci Technol,2013,47(20):11726.
5 Cremer T, Jensen S C, Friend C M. Enhanced photo-oxidation of formaldehyde on highly reduced o-TiO2(110)[J]. J Phys Chem C,2014,118(50):29242.
6 Eddaoud M, Kim J, Rosi N, et al. Systematic design pore and functionality in isoreticular MOFs and their application in methane sto-rage[J]. Nature,2002,295(5554):469.
7 Christian Serre, Franck Millange, Christelle Thouvenot, et al. Very large breathing effect in the first nanoporous chromium(Ⅲ)-based solids: MIL-53(Cr) or Cr (OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x· H2Oy[J]. J Am Chem Soc,2002,124(45):13519.
8 Li H, Eddaoudi M, O′Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402(6759):276.
9 Mendoza-Cortes J L, Pascal T A, Goddard W A. Design of covalent organic frameworks for methane storage[J]. J Phys Chem A,2011,115(47):13852.
10 Fu J, Das S, Xing G, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2[J]. J Am Chem Soc,2016,138(24):7673.
11 Luo F, Yan C S, Dang L L, et al. UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation[J]. J Am Chem Soc,2016,138(17):5678.
12 Hall E A, Redfern L R, Wang M H, et al. Lewis acid activation of a hydrogen bond donor metal-organic framework for catalysis[J]. ACS Catal,2016,6(5):3248.
13 Cao S L, Yue D M, Li X H, et al. Novel nano-/micro-biocatalyst: Soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1, 2-octanediol in deep eutectic solvents[J]. ACS Sustain Chem Eng,2016,4(6):3586.
14 Liu H, Xi F G, Sun W, et al. Amino- and sulfo-bifunctionalized metal-organic frameworks: One-pot tandem catalysis and the cataly-tic sites[J]. Inorg Chem,2016,55(12):5753.
15 Mon M, Ferrando-Soria J, Grancha T, et al. Selective gold recovery and catalysis in a highly flexible methionine-decorated metal-organic framework[J]. J Am Chem Soc,2016,138 (25):7864.
16 Sheberla D, Su L, Blood-Forsythe M A, et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue[J]. J Am Chem Soc,2014,136(25):8859.
17 Talin A A, Allendorf M D. Tunable electrical conductivity in metal-organic framework thin-film devices[J]. Science,2016,343(6166):66.
18 Jamali A, Tehrani A A, Shemirani F, et al. Lanthanide metal-organic frameworks as selective microporous materials for adsorption of heavy metal ions[J]. Dalton Trans,2016,45(22):9193.
19 Liang K, Ricco R, Dohterty C M, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromo-lecules[J]. Nat Commun,2014,6:1.
20 Choi S, Drese J H, Jones C W. Adsorbent materials for carbon dio-xide capture from large anthropogenic point sources[J]. Cheminform,2010,41(6):796.
21 Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chem Rev,2011,112(2):724.
22 Zhuang C F, Liu J L, Dai W, et al. Synthesis and applications in catalysis of porphyrinic metal-organic frameworks[J].Prog Chem,2014,26(2):277(in Chinese).
庄长福, 刘建路, 戴文,等. 卟啉金属有机骨架材料的合成及其在催化反应中的应用[J]. 化学进展,2014,26(2):277.
23 Bordiga S, Lamberti C, Ricchiardi G, et al. Electronic and vibratio-nal properties of a MOF-5 metal-organic framework:ZnO quantum dot behaviour[J]. Chem Commun,2004, 20(20):2300.
24 Xamena F X L I, Corma A, Garcia H. Applications for metal-orga-nic frameworks (MOFs) as quantum dot semiconductors[J]. J Phys Chem C,2006,111(1):80.
25 Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J Am Chem Soc,2008, 130(42):13850.
26 Gomes S C, Luz I, Fx L I X, et al. Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation[J]. Chemistry—A Eur J,2010, 16(36):11133.
27 Danhardi M, Serre C, Frot T, et al. A new photoactive crystalline highly porous titanium(Ⅵ) dicarboxylate[J]. J Am Chem Soc,2009,131(131):10857.
28 Reinsch H, Hinterholzinger F M, Jäker P, et al. Unexpected photoreactivity in a NO2-functionalized aluminum-MOF[J]. J Phys Chem C,2015,119(47):26401.
29 Sun D, Lin Y, Li Z. Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti)[J]. Appl Catal B:Environ,2015,164(164):428.
30 Laurier K G, Vermoortele F, Ameloot R, et al. Iron(3)-based me-tal-organic frameworks as visible light photocatalysts[J]. J Am Chem Soc,2013,135(39):14488.
31 Mercedes A, Esther C, Belén F, et al. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chemistry,2007,13(18):5106.
32 Lin C K, Zhao D, Gao W Y, et al. Tunability of band gaps in metal-organic frameworks[J]. Inorg Chem,2012,51(16):9039.
33 Fateeva A, Chater P A, Ireland C P, et al. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis[J]. Angew Chem Int Ed,2012,51(30):7440.
34 Xu H Q, Hu J H, Wang D K, et al. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-Hole separation via electron trap states[J]. J Am Chem Soc,2015,137(42):13440.
35 Johnson J A, Zhang X, Reeson T C, et al. Facile control of the charge density and photocatalytic activity of an anionic indium porphyrin framework via in situ metalation[J]. J Am Chem Soc,2014,136(45):15881.
36 Xie M H, Yang X L, Zou C, et al. A Sn-porphyrin-based metal-organic framework for the selective photo-oxygenation of phenol and sulfides[J]. Inorg Chem,2011,50(12):5318.
37 Fu Y, Sun D, Chen Y, et al. An amine-functionalized titanium me-tal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction[J]. Angew Chem Int Ed,2012, 124(14):3364.
38 Wang D K, Huang R K, Liu W J, et al. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways[J]. ACS Catal,2014,4(12):4254.
39 Shi L, Wang T, Zhang H, et al. An amine-functionalized Iron(Ⅲ) metal-organic framework as efficient visible-light photocatalyst for Cr(Ⅵ) reduction[J]. Adv Sci,2015,2(3):1.
40 Horiuchi Y, Toyao T, Saito M, et al. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(Ⅳ) metal-organic framework[J]. J Phys Chem C,2012,116 (39):20848.
41 Zhang Z M, Zhang T, Wang C, et al. Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate[J]. J Am Chem Soc,2015,137 (9):3197.
42 Fei H H, Sampson M D, Lee Y, et al. Photocatalytic CO2 reduction to formate using a Mn(Ⅰ) molecular catalyst in a robust metal-organic framework[J]. Inorg Chem,2015,54(14):6821.
43 Pullen S, Fei H, Orthaber A, et al. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a me-tal-organic framework[J]. J Am Chem Soc,2013, 135(45):16997.
44 Wang C, Kraffik K E, Lin W B. Pt nanoparticles@photoactive me-tal-organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection[J]. J Am Chem Soc,2012,134 (17):7211.
45 Zheng W L, Gao H B, Tian B, et al. Fabrication of low adsorption energy Ni-Mo cluster cocatalyst in metal-organic frameworks for visible photocatalytic hydrogen evolution[J]. ACS Appl Mater Interfaces,2016,8(17):10808.
46 Shi D Y, He C, Qi B, et al. Merging of the photocatalysis and copper catalysis in metal-organic frameworks for oxidative C-C bond formation[J]. Chem Sci, 2015,6(2):1035.
47 Liang R W, Shen L J, Jiang F F, et al. Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: Efficient visible-light photocatalysts[J]. ACS Appl Mater Interfaces,2015,7(18):9507.
48 Bala S, Bhattacharya S, Goswami A, et al. Designing functional metal-organic frameworks by imparting a hexanuclear copper-based secondary building unit specific properties: Structural correlation with magnetic and photocatalytic activity[J]. Cryst Growth Des,2014,14(12):6391.
49 Abedi S, Morsli A. Ordered mesoporous metal-organic frameworks incorporated with amorphous TiO2 as photocatalyst for selective ae-robic oxidation in sunlight irradiation[J]. ACS Catal,2014,4(5):1398.
50 Fuentescabrera M, Nicholson D M, Sumpter B G, et al. Electronic structure and properties of isoreticular metal-organic frameworks: The case of M-IRMOF1 (M=Zn, Cd, Be, Mg, and Ca)[J]. J Chem Phys,2005,123(12):903.
51 Shen L, Liang S, Wu W, et al. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(Ⅵ)[J]. Dalton Trans, 2013, 42(37):13649.
52 Tian J, Xu Z Y, Zhang D W, et al. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production[J]. Nat Commun, 2016,7(5):11580.
53 Berggren G, Adamska A, Lambertz C, et al. Biomimetic assembly and activation of [FeFe]-hydrogenases[J]. Nature,2013,499(7456):66.
54 Greening C, Berney M, Hards K, et al. A soil actinobacterium sca-venges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases.[J]. PNAS,2014, 111(11):4257.
55 Seigo S, Sonja V, Andreas G, et al. Iron-chromophore circular dichroism of [Fe]-hydrogenase: The conformational change required for H2 activation[J]. Angew Chem,2010,49(51):9917.
56 Felton G A, Vannucci A K, Chen J, et al. Hydrogen generation from weak acids: Electrochemical and computational studies of a diiron hydrogenase mimic[J]. J Am Chem Soc, 2007,129(41):12521.
57 Streich D, Astuti Y, Orlandi M, et al. High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site[J]. Chemistry,2010,16(1):60.
58 Feng Y A, Cheng C, Liu Z G, et al. Application of a Ni mercaptopyrimidine MOF as highly efficient catalyst for sunlight-driven hydrogen generation[J]. J Mater Chem A,2015,3(13):7163.
59 Patwardhan S, Schatz G C. Theoretical investigation of charge transfer in metal organic frameworks for electrochemical device applications[J]. J Phys Chem C,2015,119(43):24238.
60 Doherty M D, Grills D C, Fujita E. Synthesis of fluorinated ReCl(4,4′-R2-2,2′-bipyridine)(CO)3 complexes and their photophysical cha-racterization in CH3CN and supercritical CO2[J]. Inorg Chem,2009,48(5):1796.
61 Wang C, Xie Z G, Dekrafft K E, et al. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis [J]. J Am Chem Soc,2011,133(34):13445.
62 Behar D, Dhansekaran T, Neta P. Cobalt porphyrin catalyzed reduction of CO2. Radiation chemical, photochemical, and electrochemical studies[J]. J Phys Chem A,1998,102(17):2870.
63 Schneider J, Vuong K Q, Calladine J A, et al. Photochemistry and photophysics of a Pd(Ⅱ) metalloporphyrin: Re(I) tricarbonyl bipy-ridine molecular dyad and its activity toward the photoreduction of CO2 to CO[J]. Inorg Chem,2011,50 (23):11877.
64 Liu Y Y, Yang Y M, Sun Q L, et al. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework[J]. ACS Appl Mater Interfaces,2013,5(15):7654.
65 Takeda H, Koizumi H, Okamoto K, et al. Photocatalytic CO2 reduction using a Mn complex as a catalyst[J]. Chem Commun,2013,50(12):1491.
66 Shi D Y, He C, Sun W L, et al. A photosensitizing decatungstate-based MOF as heterogeneous photocatalyst for the selective C-H alkylation of aliphatic nitriles[J]. Chem Commun,2016,52(25):4714.
67 Liu L L, Tai X S, Liu M F, et al. Method of creating chiral metal-organic frameworks and its use in asymmetric catalysis[J]. Chem Ind Eng Prog,2015,34(4):997(in Chinese).
刘丽丽, 台夕市, 刘美芳,等. 构筑手性金属有机骨架的方法及其在不对称催化中的应用[J]. 化工进展,2015,34(4):997.
68 Wu P Y, He C, Wang J, et al. Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes[J]. J Am Chem Soc,2012,134(36):14991.
69 Chen C Y, Li Y, Xiao Y, et al. Advances in synthesis and application of sulfoxide compounds[J]. Chinese J Org Chem,2011,31(6):925.
70 Wang D K, Wang M T, Li Z H. Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol[J].ACS Catal,2015,5(11):6852.
71 Paraschiv C, Cucos A, Shova S, et al. New Zn(Ⅱ) coordination polymers constructed from amino-alcohols and aromatic dicarboxylic acids:Synthesis, structure, photocatalytic properties, and solid-state conversion to ZnO[J]. Cryst Growth Des,2015,15(2):799.
72 Wei H S, Liu X Y, Wang A Q, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes[J]. Nat Commun,2014,5(1):5634.
73 Cheng S F, Zhang H Y, Yu X L, et al. Photocatalytic reduction of nitro compounds using TiO2 photocatalyst by UV and Vis dye-sensitized systems[J]. Chinese J Chem,2011,29(3):399.
74 Jian S P, Li Y W. Ni@Pd core-shell nanoparticles supported on a metal-organic framework as highly efficient catalysts for nitroarenes reduction[J]. Chinese J Catal,2016,37(1):91.
75 Deenadayalan M S, Sharma N, Verma P K, et al. Visible-light-assisted photocatalytic reduction of nitroaromatics by recyclable Ni(Ⅱ)-porphyrin metal-organic framework (MOF) at RT[J]. Inorg Chem,2016,55(11):5320.
76 Xu W Y, Zhu F H, Zhang L. Research progress in synthesis and applications of perylene bisimide derivatives[J]. Mater Rev:Rev,2010,24(11):79( in Chinese)
徐业伟, 朱方华, 张林. 苝酰亚胺衍生物的合成及其应用进展[J]. 材料导报:综述篇,2010,24(11):79.
77 Zeng L, Liu T, He C, et al. Organized aggregation makes insoluble perylene diimide efficient for the reduction of aryl halides via conse-cutive visible light-induced electron-transfer processes[J]. J Am Chem Soc,2016,138(12):3958.
78 Martinez R, Simon M O, Chevalier R, et al. C-C bond formation via C-H bond activation using an in situ-generated ruthenium catalyst[J]. J Am Chem Soc,2009,131(22):7887.
79 Zhang Y, Feng B N. Asymmetric catalytic carbon-carbon coupling reactions via cross-dehydrogenative coupling reactions[J]. Chinese J Org Chem,2014,34(12):2406.
80 Wu J L, Xiang S H, Zeng J, et al. Practical route to 2-quinolinones via a Pd-catalyzed C-H bond activation/C-C bond formation/cyclization cascade reaction[J]. Org Lett,2015,17(2):222.
81 Gutierrezbonet A, Juliahernandez F, Luis B D, et al. Pd-catalyzed C(sp3)-H functionalization/carbenoid insertion: All-carbon quaternary centers via multiple C-C bond formation[J]. J Am Chem Soc,2016,138(20):6384.
82 Zhang W Q, Li Q Y, Zhang Q, et al. Robust metal-organic framework containing benzoselenadiazole for highly efficient aerobic cross-dehydrogenative coupling reactions under visible light[J]. Inorg Chem,2016,55(3):1005.
83 Liu F, Fan F T, Lv Y C, et al. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J].CIESC J,2016,5(5):1635(in Chinese).
刘芳, 樊丰涛, 吕玉翠,等. 石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J]. 化工学报,2016,5(5):1635.
84 Fu H R, Kang Y, Zhang J. Highly selective sorption of small hydrocarbons and photocatalytic properties of three metal-organic frameworks based on tris(4-(1H-imidazol-1-yl)phenyl)amine ligand[J]. Inorg Chem,2014,53(8):4209.
85 Tranchemontagne D J, Mendoza-Cortes J L, O′Keeffe M, et al. Se-condary building units, nets and bonding in the chemistry of metal-organic frameworks[J]. Chem Soc Rev,2009,40(29):1257.
86 Zhang C H, Ai L H, Jiang J. Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of Rhodamine B under visible light[J]. Ind Eng Chem Res,2015,54(1):153.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[3] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[4] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[5] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[6] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[7] 彭寿, 赵凤阳, 曹欣, 单传丽. 澄清剂氧化锡对TFT-LCD基板玻璃澄清效果的影响[J]. 材料导报, 2019, 33(z1): 195-198.
[8] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[9] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[10] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[11] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[12] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[13] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[14] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[15] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed