Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20070201-8    https://doi.org/10.11896/cldb.20070201
  无机非金属及其复合材料 |
高熵陶瓷材料的研究进展
谢鸿翔1,2, 项厚政1,2, 马瑞奇1,2, 陈雨雪1,2, 刘国忠1,2, 姚思远1,2, 冒爱琴1,2,3
1 安徽工业大学先进金属材料绿色制备与表面技术教育部重点实验室,安徽 马鞍山 243002
2 安徽工业大学材料科学与工程学院,安徽 马鞍山 243002
3 安徽工业大学冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 243002
Research Progress of High-entropy Ceramic Materials
XIE Hongxiang1,2, XIANG Houzheng1,2, MA Ruiqi1,2, CHEN Yuxue1,2, LIU Guozhong1,2, YAO Siyuan1,2, MAO Aiqin1,2,3
1 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, Anhui, China
2 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui , China
3 Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, Anhui, China
下载:  全 文 ( PDF ) ( 2570KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵陶瓷材料通常是指由五种或五种以上金属阳离子以等物质的量或近等物质的量组成的多组元固溶体。近年来,高熵陶瓷(High-entropy ceramics, HECs)由于具有单一的晶体结构和优异的物理化学性能,成为陶瓷领域的研究热点之一。本文介绍了国内外高熵陶瓷材料,如高熵碳化物、高熵氮化物、高熵氧化物、高熵硼化物、高熵硅化物和高熵硫化物的发展状况,总结了高熵陶瓷制备、结构性能与应用的研究工作,并对高熵陶瓷的发展方向和前景进行了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢鸿翔
项厚政
马瑞奇
陈雨雪
刘国忠
姚思远
冒爱琴
关键词:  高熵陶瓷  制备方法  性能  应用    
Abstract: High-entropy ceramic materials usually refer to the multi-principal solid solution composed of five or more ceramic components in equal mole or nearly equal mole. In recent years,high-entropy ceramics(HECs) have gained considerable attention due to their single-phase crystal structure and excellent properties. In this paper, we review the research development of high-entropy ceramic materials, such as high-entropy carbide, high-entropy nitride, high-entropy oxide, high-entropy boride, high entropy-silicide and high-entropy sulfide at home and abroad, summarize preparation method, structural properties and application structures and properties of HECs. Furthermore, we also propose our view about the future development and prospect of high-entropy ceramics.
Key words:  high-entropy ceramics    preparation method    performance    application
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TB32  
  TQ174.75  
基金资助: 安徽省自然科学基金(2008085SMB125);冶金减排与资源综合利用教育部重点实验室(安徽工业大学)开放基金项目(JKF20-6);先进金属材料绿色制备与表面技术教育部重点实验室主任基金(GFST2022ZR08)
通讯作者:  maoaiqinmaq@163.com   
作者简介:  谢鸿翔,2018年6月毕业于安徽工业大学,获得工学学士学位。现为安徽工业大学材料科学与工程学院硕士研究生,在冒爱琴教授的指导下进行研究。目前主要研究领域为高熵氧化物的制备及其在能量储存中的应用。
冒爱琴,博士,安徽工业大学材料科学与工程学院副教授,硕士研究生导师。长期以来专注于高熵材料的设计、制备和功能化应用研究。先后主持和参加国家自然科学基金项目、安徽省自然科学基金项目、浙江省自然科学基金项目及横向科研课题10余项,在国内外重要期刊发表学术论文30多篇,授权发明专利20多件,荣获安徽科学技术奖三等奖一项等。
引用本文:    
谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
XIE Hongxiang, XIANG Houzheng, MA Ruiqi, CHEN Yuxue, LIU Guozhong, YAO Siyuan, MAO Aiqin. Research Progress of High-entropy Ceramic Materials. Materials Reports, 2022, 36(6): 20070201-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070201  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20070201
1 Wang X P, Kong F T. Journal of Aeronautical Materials, 2019, 39(6), 1(in Chinese).
王晓鹏,孔凡涛. 航空材料学报, 2019, 39(6), 1.
2 Mayrhofer P H, Kirnbauer A, Ertelthaler P, et al. Scripta Materialia, 2018, 149, 93.
3 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
4 Qin Y, Liu J X, Li F, et al. Journal of Advanced Ceramics, 2019, 8(1), 148.
5 Quan F, Xiang H Z, Yang L. The Chinese Journal of Process Enginee-ring, 2019, 19(3), 447(in Chinese).
权峰, 项厚政, 杨磊, 等. 过程工程学报, 2019, 19(3), 447.
6 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
7 Tsai M H,Yeh J W. Materials Research Letters, 2014, 2(3), 107.
8 Jiang S, Shao L, Fan T W, et al. Ceramics International, 2020,46(10), 15104.
9 Csanádi T, Vojtko M, Dankházi Z, et al. Journal of the European Cera-mic Society, 2020, 40(14), 4774.
10 Yan X, Constantin L, Lu Y F, et al. Journal of the American Ceramic Society, 2018, 101(10), 4486.
11 Hahn R, Kirnbauer A, Bartosik M, et al. Materials Letters, 2019, 251, 238.
12 Wang J J, Chang S Y,Ouyang F Y. Surface and Coatings Technology, 2020, 393, 125796.
13 Kirnbauer A, Kretschmer A, Koller C M, et al. Surface and Coatings Technology, 2020, 389, 125674.
14 Bérardan D, Franger S, Meena A K, et al. Journal of Materials Chemistry A, 2016, 4(24), 9536.
15 Sarkar A, Wang Q, Schiele A, et al. Advanced Materials, 2019, 31(26), 1806236.
16 Yoon B, Avila V, Raj R, et al. Scripta Materialia, 2020, 181, 48.
17 Gild J, Zhang Y, Harrington T, et al. Scientific Reports, 2016, 6(1), 37946.
18 Zhang R Z, Gucci F, Zhu H, et al. Inorganic Chemistry, 2018, 57(20), 13027.
19 Gild J, Braun J, Kaufmann K, et al. Journal of Materiomics, 2019, 5(3), 337.
20 Rost C M, Sachet E, Borman T, et al. Nature Communications., 2015, 6, 8485.
21 Rost C M, Rak Z, Brenner D W, et al. Journal of the American Ceramic Society, 2017, 100(6), 2732.
22 Dusza J, Švec P, Girman V, et al. Journal of the European Ceramic Society, 2018, 38(12), 4303.
23 Alvi S A, Zhang H,Akhtar F. IntechOpen, 2019, 5(4), 295.
24 Lei Z, Liu X, Wang H, et al. Scripta Materialia, 2019,165, 164.
25 Sarkar A, Velasco L, Wang D, et al. Nature Communications, 2018, 9(1), 3400.
26 Gu J F, Zou J, Zhang F, et al. Materials China, 2019, 38(9),855(in Chinese).
顾俊峰, 邹冀, 张帆, 等. 中国材料进展, 2019, 38(9), 855.
27 Chen K P, Li Z M, Ma J X, et al. Journal of Ceramics, 2020, 41(2),157(in Chinese).
陈克丕, 李泽民, 马金旭, 等. 陶瓷学报, 2020, 41(2), 157.
28 Wang Y, Liu Q,Wang H. Journal of Inorganic Materials, 2020, 36(4), 366.
29 Ye B L, Wen T Q, Nguyen M C, et al. Acta Materialia, 2019, 170, 15.
30 Gild J, Samiee M, Braun J L, et al. Journal of the European Ceramic Society, 2018, 38(10), 3578.
31 Jiang S, Hu T, Gild J, et al. Scripta Materialia, 2018, 142, 116.
32 Mao A Q, Quan F, Xiang H Z, et al. Journal of Molecular Structure, 2019, 1194, 11.
33 McCormack S J,Navrotsky A. Acta Materialia, 2021, 202, 1.
34 Kirnbauer A, Spadt C, Koller C M, et al. Vacuum, 2019, 168, 108850.
35 Wright A J, Wang Q, Huang C, et al. Journal of the European Ceramic Society, 2020, 40, 2120.
36 Bérardan D, Franger S, Dragoe D, et al. Physica Status Solidi (RRL) - Rapid Research Letters, 2016, 10(4), 328.
37 Zhou S, Pu Y, Zhang Q, et al. Ceramics International, 2020, 46(6), 7430.
38 Edalati P, Wang Q, Razavi-Khosroshahi H, et al. Journal of Materials Chemistry A, 2020, 8(7), 3814.
39 Parida T, Karati A, Guruvidyathri K, et al. Scripta Materialia, 2020, 178, 513.
40 Zheng Y N, Yi Y K, Fan M H, et al. Energy Storage Materials, 2019, 23, 678.
41 Zhang Y, Guo W M, Jiang Z B, et al. Scripta Materialia, 2019, 164, 135.
42 Zhao Z F, Chen H, Xiang H M, et al. Journal of Materials Science & Technology, 2020, 47, 45.
43 Chen H, Fu J, Zhang P F, et al. Journal of Materials Chemistry A, 2018, 6(24), 11129.
44 Okejiri F, Zhang Z, Liu J, et al. ChemSusChem, 2020, 13(1),111.
45 Wang D D, Liu Z J, Du S Q, et al. Journal of Materials Chemistry A, 2019, 7(42), 24211.
46 Marik S, Singh D, Gonano B, et al. Scripta Materialia, 2020, 183, 107.
47 Cao F, Chen H, Xie Z, et al. Chinese Journal of Physics, 2020, 65, 424.
48 Mao A, Xie H X, Xiang H Z, et al. Journal of Magnetism and Magnetic Materials, 2020, 503, 166594.
49 Mao A Q, Xiang H Z, Zhang Z G, et al. Journal of Magnetism and Magnetic Materials, 2019, 497(1), 165884.
50 Qiu N, Chen H, Yang Z M, et al. Journal of Alloys and Compounds, 2019, 777, 767.
51 Wang Q S, Sarkar A, Li Z Y, et al. Electrochemistry Communications, 2019, 100, 121.
52 Xiang H Z, Xie H X, Chen Y X, et al. Journal of Materials Science, 2021, 56(13), 8127.
53 Wang D, Jiang S, Duan C, et al. Journal of Alloys and Compounds, 2020, 844, 156158.
54 Chen H, Qiu N, Wu B, et al. RSC Advances, 2020, 10(16), 9736.
55 Nguyen T X, Patra J, Chang J K, et al. Journal of Materials Chemistry A, 2020, 8(36), 18963.
56 Braic V, Vladescu A, Balaceanu M, et al. Surface and Coatings Technology, 2012, 211, 117.
57 Chen H, Xiang H, Dai F Z, et al. Journal of Materials Science & Technology, 2019, 35(8), 1700.
58 Tan Y, Chen C, Li S, et al. Journal of Alloys and Compounds, 2020, 816, 152523.
59 Liu D, Zhang A, Jia J, et al. Journal of the European Ceramic Society, 2020, 40(8), 2746.
60 Ye B L, Wen T Q, Huang K H, et al. Journal of the American Ceramic Society, 2019, 102(7), 4344.
61 Wang K, Chen L, Xu C, et al. Journal of Materials Science & Technology, 2020, 39, 99.
62 Castle E, Csanadi T, Grasso S, et al. Scientific Reports, 2018, 8(1), 8609.
63 Han X, Girman V, Sedlak R, et al. Journal of the European Ceramic Society, 2020, 40(7), 2709.
64 Wei X F, Qin Y, Liu J X, et al. Journal of the European Ceramic Society, 2020, 40(4), 935.
65 Lu K, Liu J X, Wei X F, et al. Journal of the European Ceramic Society, 2020, 40, 1893.
66 Chicardia E, Garridob C G,Gotorb F J. Ceramics International, 2019, 45, 21858.
67 Kan W H, Zhang Y, Tang X, et al. Materialia, 2020, 9, 100540.
68 Li F, Lu Y, Wang X G, et al. Ceramics International, 2019, 45(17), 22437.
69 Kim Y S, Park H J, Lim K S, et al. Coatings, 2019, 10(1), 10.
70 Shen W J, Tsai M H, Chang Y S, et al. Thin Solid Films, 2012, 520(19), 6183.
71 Xu Y, Li G,Xia Y. Applied Surface Science, 2020, 523, 146529.
72 Lai C H, Tsai M H, Lin S J, et al. Surface and Coatings Technology, 2007, 201(16-17), 6993.
73 Shen W J, Tsai M H,Yeh J W. Coatings, 2015, 5(3), 312.
74 Hsieh M H, Tsai M H, Shen W J, et al. Surface & Coatings Technology, 2013, 221, 118.
75 Chen R, Cai Z, Pu J, et al. Journal of Alloys and Compounds, 2020, 827, 153836.
76 Cui P, Li W, Liu P, et al. Journal of Alloys and Compounds, 2020, 834, 155063.
77 Tsau C H,Chang Y H. Entropy, 2013, 15(12), 5012.
78 Yalamanchili K, Wang F, Schramm I C, et al. Thin Solid Films, 2017, 636, 346.
79 Tsai M, Wang C, Lai C, et al. Applied Physics Letters, 2008, 92(5), 363.
80 Liu D, Wen T Q, Ye B L, et al. Scripta Materialia, 2019, 167, 110.
81 Feng L, Fahrenholtz W G,Hilmas G E. Journal of the European Ceramic Society, 2020, 40(12), 3815.
82 Fard Z H,Kanatzidis M G. Inorganic Chemistry, 2012, 51(15), 7963.
83 Qin Y, Wang J C, Liu J X, et al. Journal of the European Ceramic Society, 2020, 40(8), 2752.
84 Liu D, Huang Y, Liu L, et al. Materials Letters, 2020, 268, 127629.
85 Chen H, Zhao B, Zhao Z, et al. Journal of Materials Science & Technology, 2020, 47, 216.
[1] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[2] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[3] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[4] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[5] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[6] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[7] 宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
[8] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[9] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[10] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[11] 张光睿, 姚特, 龚沛, 乔禹, 王婷婷, 梁雨萍, 郝宏波. (Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能[J]. 材料导报, 2022, 36(5): 20120138-5.
[12] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[13] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[14] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[15] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed