Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9123-9132    https://doi.org/10.11896/cldb.19120095
  无机非金属及其复合材料 |
稀土掺杂钇铝石榴石晶体激光光纤的研究进展
申冰磊1, 王中跃1,*, 于春雷2, 王欣2, 王世凯2, 胡丽丽2,*, 韦玮1
1 南京邮电大学电子与光学工程学院、微电子学院,南京 210023
2 中国科学院上海光学精密机械研究所高功率激光单元技术实验室,上海 201800
Research Progress of Rare Earth Doped Yttrium Aluminum Garnet Crystal Laser Fiber
SHEN Binglei1, WANG Zhongyue1,*, YU Chunlei2, WANG Xin2, WANG Shikai2, HU Lili2,*, WEI Wei1
1 College of Electronics and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2 High Power Laser Unit Technology Laboratory, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
下载:  全 文 ( PDF ) ( 14976KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 受激布里渊散射(SBS)和热管理限制了玻璃光纤在光纤激光器中极限输出功率的提高。钇铝石榴石(YAG)晶体光纤结合了晶体和光纤的优点,相较于玻璃光纤,它的SBS增益系数低得多,可以有效地减小非线性效应和热损伤,为光纤激光器研究提供了新的方向。
YAG晶体在达到熔点(1 970 ℃)后会迅速熔化成低粘度液体,不利于晶体光纤的制备;制备YAG晶体纤芯/玻璃包层的复合光纤是研究YAG晶体光纤的主要方法,但是存在YAG晶体纤芯玻璃化、纤芯与包层间的成分扩散以及数值孔径过大的问题;未掺杂的YAG晶体作为稀土掺杂的YAG晶体纤芯的包层生长困难,有待于进一步研究。
目前多采用激光加热基座生长技术(LHPG)和微下拉法(μ-PD)制备YAG晶体光纤,且制得的光纤质量较好;对YAG晶体光纤的研究,重点在于采用折射率、热膨胀与YAG晶体相匹配的玻璃或晶体作为包层,并探索复合工艺,减小数值孔径和减少纤芯与包层间的扩散,现有文献报道的最大输出功率达到590 W。
本文介绍了几种YAG晶体光纤的制备方法,对国内外关于无包层稀土掺杂YAG晶体光纤、玻璃包层稀土掺杂YAG晶体复合光纤、YAG晶体包层晶体光纤及YAG晶体光纤与传统无源光纤器件的熔接的研究现状进行了综述,并对目前的研究状况进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申冰磊
王中跃
于春雷
王欣
王世凯
胡丽丽
韦玮
关键词:  光纤  钇铝石榴石  晶体光纤  制备方法  复合光纤    
Abstract: Stimulated Brillouin scattering (SBS) and thermal management limit the increase of the ultimate output power of glass fibers in fiber lasers. Yttrium aluminum garnet (YAG) crystal fiber combines the advantages of crystal and fiber. Compared with glass fiber, its SBS gain coefficient is lower, Which can effectively reduce nonlinear effects and thermal damage, and provide a new direction for fiber laser research.
After the YAG crystal reaches the melting point (1 970 ℃), it will quickly melt into a low-viscosity liquid, which is not conducive to the preparation of crystal fiber. Preparation of YAG crystal core/glass cladding composite fiber is the main method to study YAG crystal fiber, but there are problems of vitrification of YAG crystal core, component diffusion between core and cladding, and excessive numerical aperture. It is difficult to grow undoped YAG crystal as the cladding layer of the rare-earth-doped YAG crystal core, and further research is needed.
At present, the YAG crystal fiber is prepared by laser heating pedestal growth technology (LHPG) and micro pull-down method (μ-PD), and the quality of the prepared fiber is better. The research on YAG optical fiber focuses on using glass or crystal with matching refractive index and thermal expansion as YAG crystal as the cladding, and exploring the composite process to reduce the numerical aperture and reduce the diffusion between the core and the cladding. The maximum output power reported in the existing paper is 590 W.
This article introduces several preparation methods of YAG crystal fiber, and status of the unclad rare earth doped YAG crystal fiber, glass cladding rare earth doped YAG crystal composite fiber, YAG crystal cladding crystal fiber and fusion of YAG crystal fiber and traditional passive fiber device is reviewed, The current research status is summarized and forecasted.
Key words:  optical fiber    yttrium aluminum garnet    crystal fiber    preparation method    composite fiber
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TQ342+.82  
基金资助: 国家自然科学基金(51502144;61775224)
通讯作者:  zywang@njupt.edu.cn;hulili@siom.ac.cn   
作者简介:  申冰磊,2016年6月毕业于河南师范大学,获得工学学士学位。现为南京邮电大学电子与光学工程学院、微电子学院硕士研究生,指导老师为王中跃。曾于2018年9月至2020年6月在中国科学院上海光学精密机械研究所高功率激光单元技术实验室学习。目前主要研究领域为稀土掺杂的YAG晶体纤芯玻璃包层复合光纤。
王中跃,2014年毕业于南京邮电大学信息材料与纳米技术研究院,获工学博士学位。曾于2011年2月至2012年8月期间在中科院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室学习。2014年7月至今在南京邮电大学电子与光学工程学院、微电子学院工作。主要研究方向有稀土掺杂纳米发光材料、纳米晶分散液光散射分析、柔性光纤传像束的酸溶法制备等。目前已在国内外重要学术刊物:NanoscaleJournal of Materials ChemistryOptics LettersCrystEngCommJournal of the American Ceramic Society等发表SCI论文近十篇。
胡丽丽,1990年在中科院上海光机所获得无机材料专业工学博士学位,中国科学院上海光机所研究员、博士研究生导师。主要从事激光玻璃、发光玻璃及激光光纤的应用基础研究和玻璃制备工艺技术研究。
引用本文:    
申冰磊, 王中跃, 于春雷, 王欣, 王世凯, 胡丽丽, 韦玮. 稀土掺杂钇铝石榴石晶体激光光纤的研究进展[J]. 材料导报, 2021, 35(9): 9123-9132.
SHEN Binglei, WANG Zhongyue, YU Chunlei, WANG Xin, WANG Shikai, HU Lili, WEI Wei. Research Progress of Rare Earth Doped Yttrium Aluminum Garnet Crystal Laser Fiber. Materials Reports, 2021, 35(9): 9123-9132.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120095  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9123
1 Feng H L, Liu Y S, Han F, et al. Laser & Optoelectronics Progress,2014,51(2),020004(in Chinese).
冯寒亮,刘彦升,韩锋,等.激光与光电子学进展,2014,51(2),020004.
2 Gan Q J, Jiang B X, Zhang P D, et al. Laser & Optoelectronics Progress,2017,54(1),010003(in Chinese).
甘啟俊,姜本学,张攀德,等.激光与光电子学进展,2017,54(1),010003.
3 Wang Y L, Wang Q. Laser & Optoelectronics Progress,2018,55(10),100006(in Chinese).
王雅兰,王庆.激光与光电子学进展,2018,55(10),100006.
4 Li R T, Wang X L, Zhou P, et al. Laser & Optoelectronics Progress,2011,48(10),101401(in Chinese).
粟荣涛,王小林,周朴,等.激光与光电子学进展,2011,48(10),101401.
5 Liu Z J, Zhou P, Xu X J, et al. Science China Technique Science,2013,43(9),979(in Chinese).
刘泽金,周朴,许晓军,等.中国科学:技术科学,2013,43(9),979.
6 Hu M, Quan Z, Wang J H, et al. Chinese Optics Letters,2016,14(3),031403.
7 Ma P F, Zhou P, Ma Y X, et al. Applied Optics,2013,52(20),4854.
8 Fu S, Shi W, Feng Y, et al. Journal of the Optical Society of America B,2017,34(3),A49.
9 Zhao X, Yang Y F, Shen H, et al. High Power Laser Science and Engineering,2017,5(4),52.
10 Liao S Y, Gong M L. Laser & Optoelectronics Progress,2007(6),27(in Chinese).
廖素英,巩马理.激光与光电子学进展,2007(6),27.
11 Dawson J W, Messerly M J, Beach R J, et al. Optics Express,2008,16(17),13240.
12 Dawson J W, Messerly M J, Heebner J E, et al. in Proceedings of SPIE, the International Society for Optical Engineering,2010.
13 Zhu J J, Zhou P, Wang X L, et al. IEEE Journal of Quantum Electro-nics,2012,48(4),480.
14 Zhang H W, Zhou P, Wang X L, et al. Acta Optica Sinica,2014,34(1),0114003(in Chinese).
张汉伟,周朴,王小林,等.光学学报,2014,34(1),0114003.
15 Markovic V, Rohrbacher A, Hofmann P, et al. Optics Express,2015,23(20),25883.
16 Kuznetsov I, Mukhin I, Palashov O, et al. Optics Letters,2018,43(16),3941.
17 Martial I, Balembois F, Didierjean J, et al. Optics Express,2011,19(12),11667.
18 Yu L, Ye L H, Bao R J, et al. Optics Communications,2018,410,632.
19 Xiao H, Deng J D, Pickrell G, et al. Journal of Lightwave Technology,2003,21(10),2276.
20 Fair G E, Hay R S, Lee H D, et al. In: Laser Technology for Defense and Security VI,2010,7686,76860E.
21 Fair G E, Kim H J, Lee H, et al. In: Laser Technology for Defense and Security VII. Orlando, Florida,2011,pp. 80390X.
22 Shaw L B, Askins C, Kim W, et al. In: Advanced Solid State Lasers. Berlin,2015,pp.AM4A.4.
23 Shaw L B, Bayya S, Kim W, et al. In: CLEO: Science and Innovations. San Jose, California,2018,pp.SF3I.3.
24 Myers J D, Kim W, Shaw L B, et al. In: Novel Optical Materials and Applications. Zurich Switzerland,2018,pp.Tu4D. 4.
25 Li Y, Johnson E G, Nie C D, et al. Optics Express,2014,22(12)14896.
26 Nie C D, Li Y, Cloos E, et al. In: Frontiers in Optics 2013. Orlando, Florida,2013,pp.FTu4B.4.
27 Bufetova G A, Rusanov S Y, Seregin V F, et al. Journal of Crystal Growth,2016,433,54.
28 Bera S, Nie C D, Soskind M G, et al. Applied Optics,2017,56(35),9649.
29 Bera S, Nie C D, Soskind M G, et al. Optical Materials,2018,75,44.
30 Wang W L, Tseng Y H, Cheng W H, et al. Optical Materials Express,2014,4(4),656.
31 Yang Y, Ye L H, Bao R J, et al. Infrared Physics & Technology,2018,91,85.
32 Shen J W, Wang X, Shen Y H. Journal of Synthetic Crystals,2008,37(1),60(in Chinese).
沈剑威,王迅,沈永行.人工晶体学报,2008,37(1),60.
33 Aubry N, Sangla D, Mancini C, et al. Journal of Crystal Growth,2009,311(23-24),4805.
34 Yoon D H, Yonenaga I, Fukuda T, et al. Journal of Crystal Growth,1994,142(3-4),339.
35 Martial I, Bigotta S, Eichhorn M, et al. Optical Materials,2010,32(9),1251.
36 Sangla D, Aubry N, Nehari A, et al. Journal of Crystal Growth,2009,312(1),125.
37 Lebbou K, Brenier A, Tillement O, et al. Optical Materials,2007,30(1),82.
38 Djebli A, Boudjada F, Pauwels K, et al. Optical Materials,2017,65,66.
39 Kononets V, Auffray E, Dujardin C, et al. Journal of Crystal Growth,2016,435,31.
40 Lebbou K. Optical Materials,2017,63,13.
41 Feldman R, Shimony Y, Lebiush E, et al. Journal of Physics and Che-mistry of Solids,2008,69(4),839.
42 Ceballos L, Osorio R, Toledano M, et al. Dental materials,2001,17(4),340.
43 Song P X, Zhao Z W, Xu X D, et al. Journal of Inorganic Materials,2005,20(4),869(in Chinese).
宋平新,赵志伟,徐晓东,等.无机材料学报,2005,20(4),869.
44 Hasse K, Kränkel C, Calmano T. In: 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. Munich Germany,2017,pp.1.
45 Gerber M, Graf T. Optics & Laser Technology,2001,33(7),449.
46 Towata A, Hwang H J, Yasuoka M, et al. Composites Part A,2001,8(32),1127.
47 Pfeifer S, Bischoff M, Niewa R, et al. Journal of the European Ceramic Society,2014,34(5),1321.
48 Tan H B, Ma X L, Lu J H, et al. Ceramics-Silikaty,2012,56(3),187.
49 Li C S, Zhang Y J, Gong H Y, et al. Materials Chemistry and Physics,2009,113(1),31.
50 Ikesue A, Aung Y L, Okamoto T, et al. In: Conference on Lasers and Electro-Optics. Long Beach, California,2006,pp.CTuEE3.
51 Ikesue A, Aung Y L. In: Laser Source Technology for Defense and Secu-rity III. Orlando, Florida,2007,pp.655209.
52 Li Y, Zhang Z Y, Buckley I, et al. In: Solid State Lasers XXIV: Technology and Devices. San Francisco, California,2015,pp.934205.
53 Li Y, Miller K, Johnson E G, et al. Optics Express,2016,24(9),9751.
54 Rao H, Liu Z J, Cong Z H, et al. Crystals,2017,7(7),189.
55 Sangla D, Aubry N, Didierjean J, et al. Applied Physics B,2008,94(2),203.
56 Sangla D, Martial I, Aubry N, et al. Applied Physics B,2009,97(2),263.
57 Martial I, Didierjean J, Aubry N, et al. In: Conference on Solid State Lasers XX: Technology and Devices. San Francisco, California,2011,pp.79121G.
58 Délen X, Martial I, Didierjean J, et al. Applied Physics B,2011,104(1),1.
59 Délen X, Piehler S, Didierjean J, et al. Optics Letters,2012,37(14),2898.
60 Délen X, Zaouter Y, Martial I, et al. Optics Letters,2013,38(2),109.
61 Kim H J, Fair G, Lee H, et al. In: Solid State Lasers XX: Technology and Devices. San Francisco, California,2011,pp.79121T.
62 Kim H J, Fair G E, Hart A M, et al. Journal of the European Ceramic Society,2015,35(15),4251.
63 Kim H, Hay R S, McDaniel S A, et al. Optics Express,2017,25(6),6725.
64 Lai C C, Huang K Y, Tsai H J, et al. Optics Letters,2009,34(15),2357.
65 Hsu K Y, Yang M H, Jheng D Y, et al. In: CLEO: Science and Innovations. San Jose, California,2012,pp.CTh4G.5.
66 Hsu K Y, Yang M H, Jheng D Y, et al. In: 2013 Conference on Lasers and Electro-Optics Pacific Rim. Kyoto Japan,2013,pp.ThA2.5.
67 Hsu K Y, Yang M H, Jheng D Y, et al. Optical Materials Express,2013,3(6),813.
68 Ballato J, Hawkins T, Foy P, et al. Journal of Applied Physics,2009,105(5),053110.
69 Dragic P D, Ballato J, Hawkins T, et al. Optical Materials,2012,34(8),1294.
70 Tuggle M, Kucera C, Hawkins T, et al. Optical Materials,2019,1,100009.
71 Kim H J, Fair G E, Hart A M, et al. In: Laser Technology for Defense and Security VIII. Baltimore, Maryland,2012,pp.838111.
72 Zheng S P, Li J, Yu C L, et al. Optics Express,2016,24(21),24248.
73 Zheng S P, Li J, Yu C L, et al. Ceramics International,2017,43(7),5837.
74 Xia H X, Chen Y T, Liu L, et al. Applied Laser,2005,25(3),169(in Chinese).
夏红星,陈玉婷,刘莉,等.应用激光,2005,25(3),169.
75 Xia J, Hu H H, He J L, et al. Chinese Journal of Lasers,2005,32(6),754(in Chinese).
夏洁,胡海华,何经雷,等.中国激光,2005,32(6),754.
76 Ye L H, Zhou X F, Song L, et al. Acta Photonica Sinica,2009,38(8),2059(in Chinese).
叶林华,周小芬,宋丽,等.光子学报,2009,38(8),2059.
77 Yu L, Ye L H, Bao R J, et al. Journal of Synthetic Crystals,2017,46(9),1672(in Chinese).
余露,叶林华,包仁杰,等.人工晶体学报,2017,46(9),1672.
78 Yuan D S, Jia Z T, Shu J, et al. Journal of Synthetic Crystals,2014,43(6),1317(in Chinese).
原东升,贾志泰,舒骏,等.人工晶体学报,2014,43(6),1317.
79 Wang Y, Zhang Y, Cao J, et al. Optics Letters,2019,44(9),2153.
80 Yoo S, Webb A S, Standish R J, et al. In: CLEO: Science and Innovations. San Jose, California,2012,pp.CM2N.2.
81 Yoo S, Webb A S, Standish R J, et al. Optics Letters,2012,37(12),2181.
82 Soleimani N, Ponting B, Gebremichael E, et al. Journal of Crystal Growth,2014,393,18.
83 Maxwell G, Ponting B, Gebremichael E, et al. Crystals,2017,7(1),12.
84 Bera S, Nie C D, Harrington J A, et al. In: Solid State Lasers XXV: Technology and Devices. San Francisco, California,2016,pp.97260C.
85 Caslavsky J, Viechnicki D. In: Final Report Army Materials and Mecha-nics Research Center. Waterdown,1979,pp.23.
86 Barnes A E, May R G, Gollapudi S, et al. Applied Optics,1995,34(30),6855.
87 Thapa R, Gibson D, Gattass R R, et al. Optical Materials Express,2016,6(8),2560.
88 Kim W, Shaw B, Bayya S, et al. In: Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X. San Diego, California,2016,pp.99580O.
89 Zhang J, Chen Y, Ponting B, et al. Laser Physics Letters,2016,13(7),075101.
90 Cai Y Q, Xu B, Zhang Y S, et al. Photonics Research,2019,7(2),162.
91 Mu X D, Meissner S, Meissner H, et al. In: Solid State Lasers XXIII: Technology and Devices. San Francisco, California,2014,pp.895906.
[1] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[2] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[3] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[4] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
[5] 张小艳, 孙元, 李慧, 陈振斌. 智能印迹聚合物研究进展及发展瓶颈[J]. 材料导报, 2020, 34(15): 15163-15173.
[6] 张永芳, 王霞, 邢志国, 黄艳斐, 郭伟玲. 面向机械装备健康监测的振动传感器研究现状[J]. 材料导报, 2020, 34(13): 13121-13130.
[7] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[8] 司伟, 丁超, 潘伟. 聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1209-1212.
[9] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[10] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[11] 曹凤, 张文彦, 张思思, 燕阳天, 杨瑞锋. 多孔金属材料的化学制备方法及性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 139-145.
[12] 张研, 刘康恺, 孟龙月. 荧光碳量子点的制备及其在生物医用领域的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 126-132.
[13] 高 鑫, 岳红彦, 郭二军, 姚龙辉, 林轩宇, 王 宝. 三维石墨烯复合材料的制备及其在超级电容器领域的研究现状[J]. 材料导报, 2017, 31(1): 25-29.
[14] 王 彤, 鲍 艳. 功能型聚丙烯酸酯/无机纳米复合皮革涂饰剂的研究进展[J]. 材料导报, 2017, 31(1): 64-71.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed