Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 25-29    https://doi.org/10.11896/j.issn.1005-023X.2017.01.004
  材料综述 |
三维石墨烯复合材料的制备及其在超级电容器领域的研究现状
高 鑫,岳红彦,郭二军,姚龙辉,林轩宇,王 宝
哈尔滨理工大学材料科学与工程学院,哈尔滨 150040
Preparation and Applications of Three-dimensional Graphene Composites in Supercapacitors
GAO Xin, YUE Hongyan, GUO Erjun, YAO Longhui, LIN Xuanyu, WANG Bao
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040
下载:  全 文 ( PDF ) ( 1539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三维石墨烯具有独特的三维多孔结构,不仅增加了与电解液的接触面积,同时为固定在其表面的活性物质提供了快速的电子传输通道,有效地提高了超级电容器的电化学性能,使其被认为是最有前景的超级电容器电极材料。综述了目前获得多孔结构、大比表面积、优异导电性和良好力学性能的三维石墨烯的方法,并简述了其复合材料在超级电容器领域的应用现状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高 鑫
岳红彦
郭二军
姚龙辉
林轩宇
王 宝
关键词:  三维石墨烯  制备方法  复合材料  超级电容器    
Abstract: The porous structure of three-dimensional graphene not only improves the contact area with the electrolyte but also provides a fast electron transport channels for the active materials anchored on it, therefore the electrochemical performance of the supercapacitors can be effectively enhanced, which makes them to be the promising materials for supercapacitors. This review summarizes the preparation methods of the three-dimensional graphene with a porous structure, large specific surface area, good electrical conductivity and excellent mechanical properties. In addition, the application status of the three-dimensional graphene composites in supercapacitors is described.
Key words:  three-dimensional graphene    preparation methods    composites    supercapacitor
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TM53  
基金资助: 国家自然科学基金(51201052);黑龙江省自然科学基金(LC2015020);黑龙江省教育厅科学技术研究项目(12541120);哈尔滨理工大学青年拔尖人才培养计划(201306
作者简介:  高鑫:男,1989年生,博士研究生,研究方向为金属基复合材料、新型储能材料 E-mail:gaoxin6825@126.com 岳红彦:通讯作者,男,1978年生,博士,教授,硕士研究生导师,研究方向为金属基复合材料、纳米材料和新型储能材料 E-mail:hyyue@hrbust.edu.cn
引用本文:    
高 鑫, 岳红彦, 郭二军, 姚龙辉, 林轩宇, 王 宝. 三维石墨烯复合材料的制备及其在超级电容器领域的研究现状[J]. 材料导报, 2017, 31(1): 25-29.
GAO Xin, YUE Hongyan, GUO Erjun, YAO Longhui, LIN Xuanyu, WANG Bao. Preparation and Applications of Three-dimensional Graphene Composites in Supercapacitors. Materials Reports, 2017, 31(1): 25-29.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.004  或          http://www.mater-rep.com/CN/Y2017/V31/I1/25
1 Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett,2008,8(3):902.
2 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
3 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
4 Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol,2008,3(2):101.
5 Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,2009,9(1):30.
6 Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat Mater,2011,10(6):424.
7 Ji H, Zhang L, Pettes M T, et al. Ultrathin graphite foam: A three-dimensional conductive network for battery electrodes[J]. Nano Lett,2012,12(5):2446.
8 Ke Q, Wang J. Graphene-based materials for supercapacitor electrodes-A review[J]. J Materiomics,2016,2(1):37.
9 Ma Y, Chen Y. Three-dimensional graphene networks: Synthesis, properties and applications[J]. National Sci Rev,2015,2(1):40.
10 Zhou Guojun, Ye Zhikai, Shi Weiwei, et al. Applications of three dimensional graphene and its composite materials[J]. Prog Chem,2014,26(6):950(in Chinese).
周国珺, 叶志凯, 石微微, 等. 三维(3D)石墨烯及其复合材料的应用[J]. 化学进展,2014, 26(6):950.
11 Yue H Y, Huang S, Chang J, et al. ZnO nanowire arrays on 3D hierachical graphene foam: Biomarker detection of Parkinson′s di-sease[J]. ACS Nano,2014,8(2):1639.
12 Zhou M, Lin T, Huang F, et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy sto-rage[J]. Adv Funct Mater,2013,23(18):2263.
13 Mecklenburg M, Schuchardt A, Mishra Y K, et al. Aerographite: Ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance[J]. Adv Mater,2012,24(26):3486.
14 Chen J, Sheng K, Luo P, et al. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors[J]. Adv Mater,2012,24(33):4569.
15 Choi B G, Yang M H, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano,2012,6(5):4020.
16 Meng Y, Wang K, Zhang Y, et al. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors[J]. Adv Mater,2013,25(48):6985.
17 Xia X H, Tu J P, Mai Y J, et al. Graphene sheet/porous NiO hybrid film for supercapacitor applications[J]. Chemistry-A Eur J,2011,17(39):10898.
18 Zhang R, Cao Y, Li P, et al. Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying[J]. Nano Res,2014,7(10):1477.
19 Sha J, Gao C, Lee S K, et al. Preparation of three-dimensional graphene foams using powder metallurgy templates[J]. ACS Nano,2016,10(1):1411.
20 Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4(7):4324.
21 Sheng K, Sun Y, Li C, et al. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering[J]. Sci Rep,2012,2:247.
22 Bai H, Li C, Wang X, et al. A pH-sensitive graphene oxide compo-site hydrogel[J]. Chem Commun,2010,46(14):2376.
23 El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science,2012,335(6074):1326.
24 Niu Z, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Adv Mater,2012,24(30):4144.
25 Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Adv Mater,2013,25(18):2554.
26 Dong X, Wang X, Wang J, et al. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode[J]. Carbon,2012,50(13):4865.
27 Peng L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J]. Nano Lett,2013,13(5):2151.
28 He Y M, Chen W J, Li X D, et al. Freestanding three-dimensional graphene MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano,2013,7(1):174.
29 El-Kady M F, Ihns M, Li M, et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-perfor-mance integrated energy storage[J]. PNAS,2015,112(14):4233.
30 Cao X H, Yin Z Y, Zhang H. Three-dimensional graphene mate-rials: Preparation, structures and application in supercapacitors[J]. Energy Environ Sci,2014,7:1850.
31 Wang C, Xu J, Yuen M F, et al. Hierarchical composite electrodes of nickel oxidenanoflake 3D graphene for high-performance pseudocapacitors[J]. Adv Funct Mater,2014,24(40):6372.
32 Jing M, Wang C, Hou H, et al. Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage[J]. J Power Sources,2015,298:241.
33 Dong C X, Xu H, Wang X W, et al. 3D graphene cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano,2012,6(4):3206.
34 Zhou W, Cao X, Zeng Z, et al. One-step synthesis of Ni3S2 nanorod @ Ni(OH)2 nanosheet core-shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors[J]. Energy Environ Sci,2013,6(7):2216.
35 Shen L, Wang J, Xu G, et al. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors[J]. Adv Energy Mater,2015,5(3):1400977.
36 Wu Q, Xu Y X, Yao Z Y, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS Nano,2010,4(4):1963.
37 Yu P, Zhao X, Huang Z, et al. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors[J]. J Mater Chem A,2014,2(35):14413.
38 Xu J J, Wang K, Zu S Z, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J]. ACS Nano,2010,4(9):5019.
39 Mahmoud M, El-Kady M F, Hao W, et al. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge[J]. Nanotechnology,2015,26(7):075702.
40 Iessa K H S, Zhang Y, Zhang G, et al. Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor[J]. J Power Sources,2016,302:92.
41 Wang S, Ma L, Gan M, et al. Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors[J]. J Power Sources,2015,299:347.
42 Zhang J, Wang J, Yang J, et al. Three-dimensional macroporous graphene foam filled with mesoporous polyaniline network for high areal capacitance[J]. ACS Sustainable Chem Eng,2014,2(10):2291.
43 Cao J, Wang Y, Chen J, et al. Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors[J]. J Mater Chem A,2015,3(27):14445.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed