Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2315-2318    https://doi.org/10.11896/cldb.18060161
  无机非金属及其复合材料 |
聚丙烯酰胺凝胶法制备氧化锆纳米粉体的热分解过程和相转变行为
刘婷1, 陈伟东1,2, 鞠红民1, 闫淑芳1, 张宇欣1, 马文1,2
1 内蒙古工业大学材料科学与工程学院,呼和浩特 010051;
2 内蒙古自治区薄膜与涂层重点实验室,呼和浩特 010051
Thermal Decomposition Process and Phase Transformation Behavior of Zirconia Nanopowders Prepared by Polyacrylamide Gel Route
LIU Ting1, CHEN Weidong1,2, JU Hongmin1, YAN Shufang1, ZHANG Yuxin1, MA Wen1,2
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051;
2 Inner Mongolia Key Laboratory of Thin Film and Coatings, Hohhot 010051
下载:  全 文 ( PDF ) ( 1972KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了制得相纯度高、颗粒细小、粒径分布较窄的ZrO2纳米粉体,采用聚丙烯酰胺凝胶法,以氧氯化锆为前驱体制备ZrO2纳米粉体。采用热重-差热同步分析仪(TG-DSC)、傅里叶变换红外光谱仪(FT-IR)、X射线衍射仪(XRD)和扫描电子显微镜(SEM)分别对凝胶的热分解过程及ZrO2粉体的物相组成、形貌和颗粒尺寸进行表征,分析了聚丙烯酰胺凝胶法制备ZrO2纳米粉体的热分解过程和相转变行为。研究结果表明,氧化锆凝胶的热分解是一个分步进行的过程,其完全热分解的温度为577 ℃。随着煅烧温度的升高,氧化锆凝胶结晶度增大,逐渐由无定型态转变为四方相(t-ZrO2)氧化锆,并在900 ℃时完全转变为单斜相(m-ZrO2)氧化锆。ZrO2纳米粉体的颗粒尺寸随着煅烧温度的升高而增大,煅烧温度为700~1 000 ℃时可制得粒径在50~200 nm范围内近似球形的ZrO2颗粒。本工作系统地研究了氧化锆凝胶的热分解过程及煅烧温度对ZrO2纳米粉体相纯度、粒径分布和颗粒形貌的影响,为聚丙烯酰胺凝胶法制备ZrO2纳米粉体的研究提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘婷
陈伟东
鞠红民
闫淑芳
张宇欣
马文
关键词:  聚丙烯酰胺凝胶法  氧化锆  纳米粉体    
Abstract: For the sake of obtaining zirconia nanopowders with high phase purity, fine particles and narrow particle size distribution, polyacrylamide gel route was employed to prepare zirconia nanopowders, taking zirconium oxychloride as precursor. Moreover, the thermal decomposition process of zirconia xerogel, phase compositions, morphologies and particle sizes of zirconia nanopowders were characterized by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The thermal decomposition of zirconia gel and phase transformation behavior of zirconia nanopowders via po-lyacrylamide technique were analyzed in detail. The results demonstrated that the thermal decomposition of zirconia gel went step by step, and its complete thermo-decomposing temperature was 577 ℃. With the increase of calcination temperature, zirconia gel showed an increase in crystallinity, which transformed from amorphous to tetragonal, and completely converted to monoclinic zirconia at 900 ℃. The particle sizes of zirconia nanopowders increased with the rising calcination temperature. Nearly spherical zirconia nanopowders with the particle size of 50—200 nm can be achieved under the calcination temperature range of 700—1 000 ℃. In the present work, the thermal decomposition of zirconia xerogel and the effect of calcination temperature on zirconia nanopowders were systematically studied, which theoretical guidance for the preparation of zirconia nanopowders by polyacrylamide gel route.
Key words:  polyacrylamide gel route    zirconia    nanopowders
                    发布日期:  2019-06-19
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(51164023;51364026);内蒙古自然科学基金(2016MS0505);内蒙古自治区科技重大专项(2018-810)
通讯作者:  weidongch@163.com   
作者简介:  刘婷,内蒙古工业大学材料科学与工程学院硕士研究生,研究方向为氧化锆功能材料。陈伟东,内蒙古工业大学材料科学与工程学院教授,博士研究生导师。1997 年至2005 年,在内蒙古工业大学获得材料科学与工程专业工学学士学位和材料加工工程专业工学硕士学位,2008 年在北京有色金属研究总院获得有色金属冶金专业工学博士学位。其主要研究方向包括:氧化锆功能材料开发、锆铪冶金、材料表面防护技术及矿产资源综合利用技术。
引用本文:    
刘婷, 陈伟东, 鞠红民, 闫淑芳, 张宇欣, 马文. 聚丙烯酰胺凝胶法制备氧化锆纳米粉体的热分解过程和相转变行为[J]. 材料导报, 2019, 33(14): 2315-2318.
LIU Ting, CHEN Weidong, JU Hongmin, YAN Shufang, ZHANG Yuxin, MA Wen. Thermal Decomposition Process and Phase Transformation Behavior of Zirconia Nanopowders Prepared by Polyacrylamide Gel Route. Materials Reports, 2019, 33(14): 2315-2318.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060161  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2315
1 Râileanu M, Todan L, Cri 塂 an D, et al. Journal of Alloys and Compounds, 2012, 517, 157.
2Han A, Wu Z, Zou H. Ceramics International, 2017, 43(18), 16043.
3Liu P, Li Z, Xiao P, et al. Ceramics International, 2018, 44(2), 1394.
4Li F, Li Y, Song Z, et al. Rare Metal Materials and Engineering, 2017, 46(4), 899.
5Gurnyk T M, Trypolskyi A I, Ivashchenko T S, et al. Journal of Non-Crystalline Solids, 2010, 356(18-19), 941.
6Sanchez-Dominguez M, Liotta L F, Di Carlo G, et al. Catalysis Today, 2010, 158(1-2), 35.
7Wang X, Wang R, Peng C, et al. Journal of Sol-Gel Science and Technology, 2011, 57(2), 115.
8Sun G , Sun G , Zhong M, et al. Russian Journal of Physical Chemistry A, 2016, 90(3), 691.
9Wang S F, Lv H B, Zhou X B, et al. Nanoscience and Nanotechnology Letters, 2014, 6(9), 758.
10 Wang S F, Zhang C, Sun G, et al. Journal of Sol-Gel Science and Technology, 2015, 73(2), 371.
11 Wang S F, Xiang X, Ding Q P, et al. Ceramics International, 2013, 39(3), 2943.
12 Ejtemaei M, Tavakoli A, Charchi N, et al. Advanced Powder Technology, 2014, 25(3), 840.
13 Costa G C C, Muccillo R. Solid State Ionics, 2008, 179(21-26), 1219.
14 Roy S. Journal of Sol-Gel Science and Technology, 2007, 44(3), 227.
15 Shadiya M A, Nandakumar N, Joseph R, et al. Advanced Powder Technology, 2017, 28(12), 3148.
16 Toraya H, Yoshimura M, Somiya S. Journal of the American Ceramic Society, 1984, 67(6), C-119.
17 Wang S F, Sun G Z, Fang L M, et al. Scientific Reports, 2015, 5, 12849.
18 Xian T, Yang H, Dai J F, et al. Chinese Journal of Catalysis, 2011, 32(4), 618 (in Chinese).
县涛, 杨华, 戴剑锋, 等. 催化学报, 2011, 32(4), 618.
19 Amirshaghaghi A, Kokabi M, Keschtkar H A. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2010, 40(9), 576.
20 Xu L L, Cui S, Wu L A, et al. Rare Metal Materials and Engineering, 2010, 39(suppl 2), 501 (in Chinese).
徐黎岭, 崔硕, 吴立昂, 等. 稀有金属材料与工程, 2010, 39(suppl 2), 501.
21 Yang H, Xian T, Wei Z Q, et al. Journal of Sol-gel Science and Techno-logy, 2011, 58(1), 238.
22 Rakhshani M, Kamrannejad M M, Babaluo A A, et al. Iranian Polymer Journal, 2012, 21(12), 821.
23 Lin G J, Yang H, Xian T, et al. Advanced Powder Technology, 2012, 23(1), 35.
24 Khajavi P, Babaluo A A, Tavakoli A, et al. Industrial & Engineering Chemistry Research, 2014, 53(1), 164.
25 Hartmann P, Brezesinski T, Sann J, et al. ACS Nano, 2013, 7(4), 2999.
26 Feng H K, Cai Z Y, Tian W, et al. Nonferrous Metals Science and Engineering, 2017, 8(1), 80 (in Chinese).
冯汉坤, 蔡宗英, 田薇, 等. 有色金属科学与工程, 2017, 8(1), 80.
27 Duan X C, Zhu X B. Nanoscience & Technology, 2005(5), 39 (in Chinese).
段学臣, 朱协彬. 纳米科技, 2005(5), 39.
28 Gao J W, Ding X G, Huang S Y, et al. Rare Metal Materials and Engineering, 2004, 33 (suppl 3), 52 (in Chinese).
高基伟, 丁新更, 黄顺余, 等. 稀有金属材料与工程, 2004, 33(suppl 3), 52.
[1] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[2] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[3] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[4] 魏玉鹏, 王海燕, 兰伟, 卢学峰, 喇培清, 马吉强. 溶液燃烧法合成Co3O4纳米粉体及热处理研究[J]. 《材料导报》期刊社, 2017, 31(6): 29-33.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed