Thermal Decomposition Process and Phase Transformation Behavior of Zirconia Nanopowders Prepared by Polyacrylamide Gel Route
LIU Ting1, CHEN Weidong1,2, JU Hongmin1, YAN Shufang1, ZHANG Yuxin1, MA Wen1,2
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051; 2 Inner Mongolia Key Laboratory of Thin Film and Coatings, Hohhot 010051
Abstract: For the sake of obtaining zirconia nanopowders with high phase purity, fine particles and narrow particle size distribution, polyacrylamide gel route was employed to prepare zirconia nanopowders, taking zirconium oxychloride as precursor. Moreover, the thermal decomposition process of zirconia xerogel, phase compositions, morphologies and particle sizes of zirconia nanopowders were characterized by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The thermal decomposition of zirconia gel and phase transformation behavior of zirconia nanopowders via po-lyacrylamide technique were analyzed in detail. The results demonstrated that the thermal decomposition of zirconia gel went step by step, and its complete thermo-decomposing temperature was 577 ℃. With the increase of calcination temperature, zirconia gel showed an increase in crystallinity, which transformed from amorphous to tetragonal, and completely converted to monoclinic zirconia at 900 ℃. The particle sizes of zirconia nanopowders increased with the rising calcination temperature. Nearly spherical zirconia nanopowders with the particle size of 50—200 nm can be achieved under the calcination temperature range of 700—1 000 ℃. In the present work, the thermal decomposition of zirconia xerogel and the effect of calcination temperature on zirconia nanopowders were systematically studied, which theoretical guidance for the preparation of zirconia nanopowders by polyacrylamide gel route.
刘婷, 陈伟东, 鞠红民, 闫淑芳, 张宇欣, 马文. 聚丙烯酰胺凝胶法制备氧化锆纳米粉体的热分解过程和相转变行为[J]. 材料导报, 2019, 33(14): 2315-2318.
LIU Ting, CHEN Weidong, JU Hongmin, YAN Shufang, ZHANG Yuxin, MA Wen. Thermal Decomposition Process and Phase Transformation Behavior of Zirconia Nanopowders Prepared by Polyacrylamide Gel Route. Materials Reports, 2019, 33(14): 2315-2318.
1 Râileanu M, Todan L, Cri 塂 an D, et al. Journal of Alloys and Compounds, 2012, 517, 157. 2Han A, Wu Z, Zou H. Ceramics International, 2017, 43(18), 16043. 3Liu P, Li Z, Xiao P, et al. Ceramics International, 2018, 44(2), 1394. 4Li F, Li Y, Song Z, et al. Rare Metal Materials and Engineering, 2017, 46(4), 899. 5Gurnyk T M, Trypolskyi A I, Ivashchenko T S, et al. Journal of Non-Crystalline Solids, 2010, 356(18-19), 941. 6Sanchez-Dominguez M, Liotta L F, Di Carlo G, et al. Catalysis Today, 2010, 158(1-2), 35. 7Wang X, Wang R, Peng C, et al. Journal of Sol-Gel Science and Technology, 2011, 57(2), 115. 8Sun G , Sun G , Zhong M, et al. Russian Journal of Physical Chemistry A, 2016, 90(3), 691. 9Wang S F, Lv H B, Zhou X B, et al. Nanoscience and Nanotechnology Letters, 2014, 6(9), 758. 10 Wang S F, Zhang C, Sun G, et al. Journal of Sol-Gel Science and Technology, 2015, 73(2), 371. 11 Wang S F, Xiang X, Ding Q P, et al. Ceramics International, 2013, 39(3), 2943. 12 Ejtemaei M, Tavakoli A, Charchi N, et al. Advanced Powder Technology, 2014, 25(3), 840. 13 Costa G C C, Muccillo R. Solid State Ionics, 2008, 179(21-26), 1219. 14 Roy S. Journal of Sol-Gel Science and Technology, 2007, 44(3), 227. 15 Shadiya M A, Nandakumar N, Joseph R, et al. Advanced Powder Technology, 2017, 28(12), 3148. 16 Toraya H, Yoshimura M, Somiya S. Journal of the American Ceramic Society, 1984, 67(6), C-119. 17 Wang S F, Sun G Z, Fang L M, et al. Scientific Reports, 2015, 5, 12849. 18 Xian T, Yang H, Dai J F, et al. Chinese Journal of Catalysis, 2011, 32(4), 618 (in Chinese). 县涛, 杨华, 戴剑锋, 等. 催化学报, 2011, 32(4), 618. 19 Amirshaghaghi A, Kokabi M, Keschtkar H A. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2010, 40(9), 576. 20 Xu L L, Cui S, Wu L A, et al. Rare Metal Materials and Engineering, 2010, 39(suppl 2), 501 (in Chinese). 徐黎岭, 崔硕, 吴立昂, 等. 稀有金属材料与工程, 2010, 39(suppl 2), 501. 21 Yang H, Xian T, Wei Z Q, et al. Journal of Sol-gel Science and Techno-logy, 2011, 58(1), 238. 22 Rakhshani M, Kamrannejad M M, Babaluo A A, et al. Iranian Polymer Journal, 2012, 21(12), 821. 23 Lin G J, Yang H, Xian T, et al. Advanced Powder Technology, 2012, 23(1), 35. 24 Khajavi P, Babaluo A A, Tavakoli A, et al. Industrial & Engineering Chemistry Research, 2014, 53(1), 164. 25 Hartmann P, Brezesinski T, Sann J, et al. ACS Nano, 2013, 7(4), 2999. 26 Feng H K, Cai Z Y, Tian W, et al. Nonferrous Metals Science and Engineering, 2017, 8(1), 80 (in Chinese). 冯汉坤, 蔡宗英, 田薇, 等. 有色金属科学与工程, 2017, 8(1), 80. 27 Duan X C, Zhu X B. Nanoscience & Technology, 2005(5), 39 (in Chinese). 段学臣, 朱协彬. 纳米科技, 2005(5), 39. 28 Gao J W, Ding X G, Huang S Y, et al. Rare Metal Materials and Engineering, 2004, 33 (suppl 3), 52 (in Chinese). 高基伟, 丁新更, 黄顺余, 等. 稀有金属材料与工程, 2004, 33(suppl 3), 52.