Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 29-33    https://doi.org/10.11896/j.issn.1005-023X.2017.06.007
  材料研究 |
溶液燃烧法合成Co3O4纳米粉体及热处理研究
魏玉鹏1, 2, 王海燕1, 2, 兰伟3, 卢学峰1, 2, 喇培清1, 2, 马吉强1, 2
1 兰州理工大学材料科学与工程学院, 兰州 730050;
2 兰州理工大学省部共建有色金属先进加工与再利用国家
重点实验室, 兰州 730050;
3 兰州大学物理科学与技术学院, 兰州 730000
Study on Synthesis of Nanocrystalline Co3O4 Powders by Solution Combustion
Technique and the Subsequent Heat Treatment Process
WEI Yupeng1,2, WANG Haiyan1,2, LAN Wei3, LU Xuefeng1,2, LA Peiqing1,2, MA Jiqiang1,2
1 College of Material Science and Technology, Lanzhou University of Technology, Lanzhou 730050;
2 State Key Laboratory of
Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050;

3 College of Physics Science and Technology, Lanzhou University, Lanzhou 730000
下载:  全 文 ( PDF ) ( 1624KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别以氨基乙酸、柠檬酸、葡萄糖为燃料, Co(NO3)2·6H2O为氧化剂, 采用溶液燃烧法合成Co3O4 粉体,并对氨基乙酸为燃料合成的Co3O4粉体在500 ℃、600 ℃和700 ℃热处理,研究其结构、微观形貌和磁学性能。研究表明各燃料配制的前驱体溶液在300 ℃均可发生燃烧反应合成Co3O4 粉体,以氨基乙酸为燃料时,合成粉体的颗粒较大,中间有气孔,分散性好,残留少量的氨基乙酸。n(氨基乙酸)∶n(硝酸钴)=1.11∶1时合成的Co3O4粉体 600 ℃热处理后得到了高纯度、分散性好、平均径向尺寸80 nm的Co3O4纳米粉体。以氨基乙酸为燃料合成的Co3O4产物在600 ℃和700 ℃热处理后,其矫顽力和剩磁值都比500 ℃热处理后的要小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏玉鹏
王海燕
兰伟
卢学峰
喇培清
马吉强
关键词:  溶液燃烧法  Co3O4纳米粉体  热处理  磁性能    
Abstract: Co3O4 powders were synthesized by solution combustion technique using glycine, citric acid, glucose as fuel,respectively, and Co(NO3)2·6H2O as oxidizing agent. Microstructure, morphology and magnetic properties of Co3O4 powders which were synthesized through glycine as fuel and annealed at 500 ℃, 600 ℃ and 700 ℃ were investigated. The results showed that Co3O4 powders can be synthesized by combustion reaction with different precursor solutions at 300 ℃. The Co3O4 powders which were synthesized by using glycine as fuel had large particle zise, certain porosity, good dispersion and a small amount of residual glycine. The nanocrystalline Co3O4 powders with high purity, fine dispersion, 80 nm average radial dimension could be obtained while glycine-to-Co(NO3)2·6H2O molar ratio was 1.11∶1 and annealing temperature was 600 ℃. The synthesized Co3O4 powders annealed at 600 ℃ and 700 ℃ exhibited lower coercivity and remanence value than those annealed at 500 ℃.
Key words:  solution combustion technique    nanocrystalline Co3O4 powders    heat treatment    magnetic property
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TB32  
  TB34  
基金资助: 国家自然科学基金青年基金(51402142);甘肃省自然科学基金(148RJZA001);省部共建有色金属先进加工与再利用国家重点实验室(兰州理工大学)开放基金(SKL1304;SKLAB02014003)
作者简介:  魏玉鹏:男,1978年生,硕士,讲师,主要研究方向为纳米功能材料,E-mail: weiyp05@lut.cn
引用本文:    
魏玉鹏, 王海燕, 兰伟, 卢学峰, 喇培清, 马吉强. 溶液燃烧法合成Co3O4纳米粉体及热处理研究[J]. 《材料导报》期刊社, 2017, 31(6): 29-33.
WEI Yupeng, WANG Haiyan, LAN Wei, LU Xuefeng, LA Peiqing, MA Jiqiang. Study on Synthesis of Nanocrystalline Co3O4 Powders by Solution Combustion
Technique and the Subsequent Heat Treatment Process. Materials Reports, 2017, 31(6): 29-33.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.007  或          http://www.mater-rep.com/CN/Y2017/V31/I6/29
1 Zhang Dongen, Li Feng,Chen Aimei,et al. A facile synthesis of Co3O4 nanoflakes: Magnetic and catalytic properties [J].Solid State Sci,2011,13:1221.
2 Sun Hongyu, Ahma Mashkoor, Zhu Jing. Morphology-controlled synthesis of Co3O4 porous nanostructures for the application as lithiumion battery electrode [J]. Electrochim Acta,2013,89:199.
3 Groven L J, Pfei T L, Pourpoint T L. Solution combustion synthesized cobalt oxide catalyst precursor for NaBH4 hydrolysis[J]. Int J Hydrogen Energ,2013,38:6377.
4 Zhu J J, Kamalakanan K, Anna F, et al. Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase[J]. ACS Catal,2012,1(4):342.
5 Dong X C, Xu H, Wang X W, et al. 3D graphene cobalt oxide electrode for high performance supercapacitor and enzymeless glucose detection[J]. ACS Nano,2012,6(4):3206.
6 Yan Hongjian, Xie Xionghui, Liu Kewei, et al. Faile preparation of Co3O4 nanoparticles via thermal decomposition of Co(NO3)2[J]. Powder Technol,2012,221:199.
7 Agilandeswari K, Ubankumar A. Synthesis, characterization, optical and magnetic properties of Co3O4 nanoparticles by quick precipitation [J]. Synth React Inorg Met-Org Nano-Met Chem,2016,46(4):502.
8 Pang Mingjun, Long Guohui, Jiang Shang, et al. Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors [J]. Chem Eng J,2015,280:377.
9 Guo Mingyong, Wang Yanmin, Pan Zhidong, et al. Sythesis of nanocrystalline (Co0.5Cu0.5)(MnFe)O4 ceramic pigment via solution combustion technique[J].J Chin Ceram Soc,2015,43(4):411(in Chinese).
郭名勇,王燕民,潘志东,等.溶液燃烧法合成(Co0.5Cu0.5)(MnFe)-O4纳米晶陶瓷色料[J].硅酸盐学报,2015,43(4):411.
10 Wei Wen, Wu Jinming, Tu Jiangping. A nonel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries [J]. J Alloy Compd,2012,513:592.
11 Toniolo J C, Takimi A S, Bergmann C P. Nano-structured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method[J]. Mater Res Bull,2010,45:672.
12 Gardey Merino M C, Palermo M, et al. Combustion synthesis of Co3O4 nanoparticles: Fuel ratio effect on the physical properties of the resulting powders[J]. Procedia Mater Sci,2012,1:588.
13 Ou Yujing, La Peiqing, Wei Yupeng, et al. Research progress in preparation methods of nano metal oxide [J]. Mater Rev:Rev,2012,26(11):36(in Chinese).
欧玉静,喇培清,魏玉鹏,等.溶液燃烧合成法制备纳米金属氧化物的研究进展[J].材料导报:综述篇,2012,26(11):36.
14 Gao Libo, Zhang Qiang, Hai Zhenyin, et al. Preparation and cha-racterization of Co3O4 nanoparticle[J]. New Chem Mater,2014,42(8):85(in Chinese).
高立波,张强,海振银,等. Co3O4纳米颗粒的制备及表征[J].化工新型材料,2014,42(8):85.
15 Jain S R,Adiga K C,Vemeker V R P. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures [J]. Combust Flame,1981,40(1):71.
16 Zhou Junyi, Li Xiaoci,Li Runsheng,et al. Single step solution combustion synthesis of CaO nanocrystals using ethylene glycol as fuel[J].Chin J Rare Met,2010,34(S2):57(in Chinese).
周俊艺, 李小慈, 李润生,等. 乙二醇溶液燃烧法一步合成CoO[J]. 稀有金属,2010,34(S2):57.
17 Nethravathi C, Sonia S, Ravishankar N, et al. Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of α-cobalt Hydroxide [J]. J Phys Chem B,2005,109:11468.
18 Ichiyanagi Y, Kimishima Y, Yamada S. Magnetic study on Co3O4 nanoparticles [J]. J Magn Magn Mater,2004,272-276:e1245.
19 Qi Yuanchun, Zhao Yanbao, Wu Zhishen. Preparation of cobalt oxi-de nanoparticles and cobalt powders by solvothermal process and their characterization [J]. Mater Chem Phys,2008,110:4.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[3] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[4] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[5] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[6] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[7] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[8] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[9] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[10] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[11] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[12] 张振扬, 赵利忠, 张家胜, 钟喜春, 刘仲武. La2Fe14B和Ce2Fe14B合金在快淬和热处理过程中相析出行为的比较[J]. 《材料导报》期刊社, 2018, 32(8): 1271-1275.
[13] 张玉, 黄晓锋, 马颖, 闫峰云, 李元东, 郝远. 添加Sm对不同尺寸Mg-6Zn-0.4Zr镁合金坯料非枝晶组织演变的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1283-1288.
[14] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[15] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed