Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22110026-7    https://doi.org/10.11896/cldb.22110026
  金属与金属基复合材料 |
原位生成周期性层片结构镀层及其在NaCl溶液中的腐蚀形貌
张先满*, 李星涛, 季坤鹏, 陈再雨, 罗洪峰
海南大学机电工程学院,海口 570228
Periodic Layered Structure Coating Formed In-situ and Its Corrosion Morphology in NaCl Solution
ZHANG Xianman*, LI Xingtao, JI Kunpeng, CHEN Zaiyu, LUO Hongfeng
School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
下载:  全 文 ( PDF ) ( 68772KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属在海洋氯离子环境中极易发生腐蚀,并造成巨大的经济损失。通过制备新型Fe-Cr-B铸钢,采用热浸镀铝-扩散热处理原位生成含有周期性层片结构(PLSs)的镀层,并利用扫描电子显微镜(SEM)、电子探针X射线显微分析仪(EPMA)等手段研究了该镀层的组织结构及其在3.5%(质量分数) NaCl溶液中的腐蚀行为。结果表明,该铸钢的显微组织主要由粗大的初生(Cr,Fe)2B及α-Fe组成;热浸镀铝时在(Cr,Fe)2B/Al界面上生成由FeAl3和Cr-Al-B相组成的PLSs,在α-Fe/Al界面上生成FeAl3;扩散热处理使得反应层增厚,且PLSs在反应层中大量生成;相比FeAl3,镀层中的PLSs在腐蚀过程中充当阳极优先腐蚀,并表现出腐蚀各向异性,尤其是其中的Cr-Al-B相可明显阻挡氯离子腐蚀,使得PLSs通过延长腐蚀路径进而提高镀层的耐氯离子腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张先满
李星涛
季坤鹏
陈再雨
罗洪峰
关键词:  Fe-Cr-B铸钢  热浸镀铝  扩散热处理  周期性层片结构(PLSs)  氯离子    
Abstract: Metals corrode easily in marine environments containing chloride ions, thus causing considerable economic losses. A novel Fe-Cr-B cast steel was prepared, and the periodic layered structures (PLSs) coating was formed in-situ by hot-dip aluminizing and thermal diffusion treatment of the Fe-Cr-B cast steel. The microstructure and corrosion behavior of the coating in a 3.5wt% NaCl solution were studied using SEM and EPMA. The results showed that the cast steel microstructure was mainly composed of coarse primary (Cr, Fe)2B and α-Fe. During hot-dip aluminizing, the PLSs composed of FeAl3and Cr-Al-B phase formed at the (Cr, Fe)2B/Al interface. While, FeAl3 formed at the α-Fe/Al interface. The thermal diffusion treatment thickened the reaction layer, in which the PLSs were formed in large quantities. Compared with FeAl3, the PLSs in the coating acted as the anode in the corrosion process and exhibited corrosion anisotropy. This study demonstrates that the Cr-Al-B phase in PLSs can significantly block chloride ion corrosion, so that the PLSs improve the chloride-ion corrosion resistance of the coating by prolonging the corrosion path.
Key words:  Fe-Cr-B cast steel    hot-dip aluminizing    thermal diffusion treatment    periodic layered structures (PLSs)    chloride ion
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TB37  
基金资助: 海南省自然科学基金(420RC522;521RC503;517076);国家自然科学基金(42066003;51701053)
通讯作者:  *张先满,海南大学机电工程学院副教授、博士、硕士研究生导师。2015年12月在华南理工大学机械与汽车工程学院材料加工工程专业获得博士学位。主要从事金属材料及其耐蚀性研究。近年来,在Corrosion Science等期刊上发表SCI论文多篇。xianman213@163.com   
引用本文:    
张先满, 李星涛, 季坤鹏, 陈再雨, 罗洪峰. 原位生成周期性层片结构镀层及其在NaCl溶液中的腐蚀形貌[J]. 材料导报, 2024, 38(12): 22110026-7.
ZHANG Xianman, LI Xingtao, JI Kunpeng, CHEN Zaiyu, LUO Hongfeng. Periodic Layered Structure Coating Formed In-situ and Its Corrosion Morphology in NaCl Solution. Materials Reports, 2024, 38(12): 22110026-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110026  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22110026
1 Zhang X M, Chen Z Y, Luo H F, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(2), 377.
2 Azam M A, Sukarti S, Zaimi M. Engineering Failure Analysis, 2020, 15, 104654.
3 Verma C, Ebenso E E, Quraishi M A. Journal of Molecular Liquids, 2017, 248, 927.
4 Li J Q, Han Q L, Zou Y B, et al. Journal of Applied Electrochemistry, 2022, 52, 1419.
5 Ding R, Chen S, Lv J, et al. Journal of Alloys and Compounds, 2019, 806, 611.
6 Gupta R, Bhardwaj P, Mishra D, et al. International Journal of Adhesion and Adhesives, 2021, 110, 102951.
7 Jędrzejczyk D, Szatkowska E. Materials, 2022, 15(17), 5887.
8 Soltis J. Encyclopedia of Interfacial Chemistry, 2018, 396.
9 Yu F, Camilli L, Wang T, et al. Carbon, 2018, 132, 78.
10 Du Y P, Tong X, Xie X, et al. Minerals, 2021, 11(6), 586.
11 Kainuma S, Yang M Y, Gao Y, et al. Construction and Building Mate-rials, 2021, 280, 122516.
12 Guan X Y, Zhao M Y, Shi H R, et al. Thin Solid Films, 2022, 755, 139330.
13 Dorofeeva T, Gubaidulina T, Sergeev V, et al. Metals, 2022, 12, 254.
14 Bhat R S, Venkatakrishna K, Nayak J, et al. Journal of Materials Engineering and Performance, 2020, 29, 6363.
15 Xu G P, Wang K, Dong X P, et al. Journal of Materials Science & Technology, 2021, 71, 12.
16 Chen G, Xue L, Wang J, et al. Corrosion Science, 2020, 174, 108836.
17 Huilgol P, Rajendra Udupa K, Udaya Bhat K. Surface and Coatings Technology, 2018, 348, 22.
18 Cho S W, Ko S J, Yoo, J S, et al. Materials, 2021, 14, 2444.
19 Zhang X M, Chen W P, Luo H F. Tribology Letters, 2018, 66, 112.
20 Zhang X M, Chen W M, Luo H F, et al. Scripta Materialia, 2017, 130, 288.
21 Zhang X M, Luo H F, Shi L Y. 2016, 23(11), 1127.
22 Wang M, Ju J, Li J, et al. Materials, 2020, 13(17), 3869.
23 Zhang X M, Chen W P, Luo H F, et al. Corrosion Science, 2019, 158, 108098.
24 Zhang X M, Chen W P, Luo H F, et al. Corrosion Science, 2017, 125, 20.
25 Gong Y, Chen Y C, Liu D D, et al. Acta Metallurgica Sinica, 2016, 52, 349.
26 Kodentsov A, Wierzbicka-Miernik A, Litynska-Dobrzynska L, et al. Intermetallics, 2019, 114, 106589.
27 Wojewoda-Budka J, Wierzbicka-Miernik A, Litynska-Dobrzynska L, et al. Metallurgical and Materials Transactions A, 2020, 51, 3497.
28 Homolová V, iripová L, Kepi J. Journal of Phase Equilibria and Diffusion, 2019, 40, 79.
29 Christodoulou P, Materials Science and Engineering:A, 2001, 301(2), 103.
30 Zhou C T, Xing J D, Xiao B, J, et al. Computational Materials Science, 2009, 44(4), 1056.
31 Röttger A, Lentz J, Theisen W. Materials & Design, 2015, 88, 420.
32 Zhang X M, Chen Z Y, Luo H F. Materials Reports, 2021, 35(7), 7145(in Chinese).
张先满, 陈再雨, 罗洪峰. 材料导报, 2021, 35(7), 7145.
33 Zhao J, Shangguan J J, Gao L, et al. Metallurgical and Materials Tran-sactions A, 2022, 53, 1035.
34 Zhang H M. Preparation and properties of layered ternary borides in Cr-Al-B system of MAB phases. Ph. D. Thesis. Beijing Jiaotong University, China, 2021(in Chinese).
张海明. MAB相Cr-Al-B体系三元层状硼化物的制备与性能研究. 博士学位论文, 北京交通大学, 2021.
35 Zhang X M, Chen Z Y, Li X T, et al. Transactions of Nonferrous Metals Society of China, 2022, 33(5), 1522.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[3] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[4] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[5] 杨绿峰, 龙凤波, 孙继玮, 陈俊武. 混凝土暴露试验的稳定时长与试验分析方法[J]. 材料导报, 2024, 38(2): 22020091-7.
[6] 李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
[7] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[8] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[9] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[10] 周宇, 刘清风. 三维混凝土细观模型构建与骨料形态对氯离子扩散影响的数值研究[J]. 材料导报, 2023, 37(24): 22070243-7.
[11] 尹青, 杨姝涵, 宋挚豪, 赵泽羽, 李泳志, 赵丹阳, 戚继球, 隋艳伟. 米粒型氯插层NiFe层状双金属氢氧化物作为新概念氯离子电池正极材料[J]. 材料导报, 2023, 37(21): 23070158-8.
[12] 李奥森, 丛贇, 张琰, 刘佳龙, 韩志伟. 钡离子对单硫型水化硫铝酸钙氯离子固化作用的影响[J]. 材料导报, 2023, 37(21): 22050307-6.
[13] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[14] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[15] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed