3D Concrete Mesoscopic Modelling and Numerical Study on the Influence of Aggregate Morphology on Chloride Diffusion
ZHOU Yu1, LIU Qingfeng1,2,*
1 State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Shanghai 200240, China
Abstract: The corrosion of steel bars caused by chloride ion erosion is the primary factor affecting the durability of concrete structures, and the characteristics of aggregate have an important influence on the chloride ion transport behavior in concrete. In this study, an efficient method for constructing meso-scalethree-dimensional geometric model of concrete was proposed, which can realize the generation and packing of gravel, pebbles and flake aggregate commonly used in engineering. The generated geometric model was further applied to the prediction of chloride transport behavior, and validated against the third-party experimental data. The three-dimensional concrete mesoscopic model proposed in this work is able to quantify the effect of aggregate morphological characteristics such as aggregate shape, volume fraction, particle size and conti-nuous gradation on chloride ion transport in a comprehensive way. In addition, the influence of uneven aggregate distribution caused by vibration on chloride ion transport was also investigated. The results show that the increase of tortuous degree and volume fraction of aggregate decreases the diffusion rate of chloride ions. Concrete with continuous aggregate gradation, in which aggregate with small particle size can be filled in the gap of aggregate with large particle size, has higher chlorine resistance than concrete with single aggregate gradation. The uneven aggregate distribution caused by vibration has a significant influence on the durability of concrete.
周宇, 刘清风. 三维混凝土细观模型构建与骨料形态对氯离子扩散影响的数值研究[J]. 材料导报, 2023, 37(24): 22070243-7.
ZHOU Yu, LIU Qingfeng. 3D Concrete Mesoscopic Modelling and Numerical Study on the Influence of Aggregate Morphology on Chloride Diffusion. Materials Reports, 2023, 37(24): 22070243-7.
1 Li J P, Li L, Chen H H, et al. Journal of Harbin Institute of Technology, 2017, 49(12), 1 (in Chinese). 李镜培, 李林, 陈浩华, 等. 哈尔滨工业大学学报, 2017, 49(12), 1. 2 Shen X H, Jiang W Q, Hou D, et al. Cement and Concrete Composites, 2019, 104, 103402. 3 Zhang P, Liu Q, Geng W C, et al. Journal of the Chinese Ceramic Society, 2017, 45(2), 235 (in Chinese). 张鹏, 刘庆, 耿文超, 等. 硅酸盐学报, 2017, 45(2), 235. 4 Hu Z, Liu Q F. Materials Reports, 2023, 37(9), 21120077 (in Chinese). 胡哲, 刘清风. 材料导报, 2023, 37(9), 21120077. 5 Liu Q F. Journal of the Chinese Ceramic Society, 2018, 46(8), 1074 (in Chinese). 刘清风. 硅酸盐学报, 2018, 46(8), 1074. 6 Wittmann F H, Roelfstra P E, Sadouki H. Materials Science and Engineering, 1984, 68, 239. 7 Gao Z G, Liu G T. Journal of Tsinghua University (Science and Techno-logy), 2003, 43(5), 710 (in Chinese). 高政国, 刘光廷. 清华大学学报(自然科学版), 2003, 43(5), 710. 8 Adil Amirjanov, Konstantin Sobolev. Particulate Science and Technology, 2008, 26(4), 380. 9 Fang Q, Zhang J H, Huan Y, et al, Engineering Mechanics, 2013, 30(1), 14. 方秦, 张锦华, 还毅, 等. 工程力学, 2013, 30(1), 14. 10 Sheng P Y, Zhang J Z, Ji Z. Composites Science and Technology, 2016, 134, 26. 11 Naderi S, Tu W, Zhang M Z. Cement and Concrete Research, 2021, 140, 106317. 12 Naderi S, Zhang M Z. Powder Technology, 2019, 355(C), 808. 13 Pan S T, Li K, Zhang C H, et al. Materials Reports, 2022, 36(10), 89 (in Chinese). 潘诗婷, 李凯, 张超慧, 等. 材料导报, 2022, 36(10), 89. 14 Qin W, Du C B. Engineering Mechanics, 2012, 29(7), 186 (in Chinese). 秦武, 杜成斌. 工程力学, 2012, 29(7), 186. 15 Caré S, Hervé E. Transport in Porous Media, 2004, 56(2), 119. 16 Tong L Y, Liu Q F. Journal of Building Materials, 2023, 26(10), 1062(in Chinese). 童良玉, 刘清风. 建筑材料学报, 2023, 26(10), 1062. 17 Liu Q F, Feng G L, Xia J, et al. Composite Structures, 2018, 183, 371. 18 Wang C, Zhang T S, Xie X G, et al. Journal of Building Materials, 2022, 25(3), 235(in Chinese). 汪超, 张同生, 谢晓庚, 等. 建筑材料学报, 2022, 25(3), 235. 19 Meng Z Z, Liu Q F, Ukrainczyk N, et al. Cement and Concrete Research, 2024, 175, 107368. 20 Li L J, Liu Q F. Journal of the Chinese Ceramic Society, 2022, 50(8), 2245 (in Chinese). 李林洁, 刘清风. 硅酸盐学报, 2022, 50(8), 2245. 21 Chen W K, Liu Q F. Journal of Hydraulic Engineering, 201, 52(5), 622 (in Chinese). 陈伟康, 刘清风. 水利学报, 2021, 52(5), 622. 22 Liu Q F, Hu Z, Wang X E, et al. Construction and Building Materials, 2022, 325, 126797. 23 Meng Z, Liu Q F, Xia J, et al. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 1854. 24 Liu Q F, Meng Z, Hou D, et al. Engineering Fracture Mechanics, 2022, 276, 108765. 25 Jin W L, Wu H T, Xu C, et al. Progress in Water Resources and Hydropower Science and Technology, 2015, 35(5), 68 (in Chinese). 金伟良, 吴航通, 许晨, 等. 水利水电科技进展, 2015, 35(5), 68. 26 Peng L, Mark G. Chinese Journal of Civil Engineering, 2014, 47(10), 61 (in Chinese). 彭里政俐, Mark G. 土木工程学报, 2014, 47(10), 61. 27 Hou T C, Nguyen V K, Su Y M, et al. Construction and Building Materials, 2017, 133, 397. 28 Jin W L, Zhang D W, Wu K X, et al. Building Structure, 2020, 50(13), 1(in Chinese). 金伟良, 张大伟, 吴柯娴, 等. 建筑结构, 2020, 50(13), 1. 29 Tadayon M H, Shekarchi M, Tadayon M. Construction and Building Materials, 2016, 123, 611. 30 Zhou S X, Han Z, Wei X, et al. Journal of Building Materials, 2018, 21(3), 351 (in Chinese). 周双喜, 韩震, 魏星, 等. 建筑材料学报, 2018, 21(3), 351. 31 Xu J, Li F M. Construction and Building Materials, 2017, 130, 11. 32 Cai Y X, Liu Q F, Yu L W, et al. Cement and Concrete Composites, 2021, 122(7), 104153. 33 Cai Y, Liu Q F, Meng Z, et al. Materials and Structures, 2022, 55, 235. 34 Cai Y, Liu Q F. Journal of Building Engineering, 2023, 79, 107701. 35 Shen X H, Liu Q F, Hu Z, et al. Ocean Engineering, 2019, 189(C), 106350. 36 Tong L Y, Liu Q F. Journal of the Chinese Ceramic Society, 2023, 51(8), 1950 (in Chinese). 童良玉, 刘清风. 硅酸盐学报, 2023, 51(8), 1950. 37 Liu Q F, Shen X H, Šavija B, et al. Cement and Concrete Research, 2023, 165, 107072. 38 Tong L Y, Xiong Q X, Zhang Z, et al. Cement and Concrete Research, 2024, 176, 107351. 39 Arvind K, Suryavanshi R, Narayan S, et al. ACI Meterials Journal, 2002, 99(5), 441. 40 Xiong Q X, Tong L Y, Zhang Z, et al. Cement and Concrete Composites, 2023, 137, 104912. 41 Wang Y Z, Wu L J, Wang Y C. Construction and Building Materials, 2018, 185, 230. 42 Tong L Y, Liu Q F, Xiong Q X, et al. Computer-Aided Civil and Infrastructure Engineering, 2024. 43 Xiong Q X, Tong L Y, Meftah F, et al. Construction and Building Mate-rials, 2024, 441, 133927. 44 Tong L Y, Xiong Q X, Zhang Z, et al. Cement and Concrete Research, 2024, 175, 107351. 45 Xiong Q X, Tong L Y, Meftah F, et al. Construction and Building Materials, 2023, 411, 133927. 46 Tong L Y, Liu Q F. Acta Materiae Compositae Sinica, 2022, 39(11), 5181. 童良玉, 刘清风. 复合材料学报, 2022, 39(11), 5181. 47 Xiao B L, Yang Z Q, Chen D X, et al. Journal of Tianjin University (Natural Science and Engineering Technology), 2019, 52(5), 545 (in Chinese). 肖柏林, 杨志强, 陈得信, 等. 天津大学学报(自然科学与工程技术版), 2019, 52(5), 545. 48 Naderi S, Tu W L, Zhang M Z. Cement and Concrete Research, 2021, 140, 106317. 49 Mohamed A, Xi Y P. Construction and Building Materials, 2018, 191, 69.