Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22070243-7    https://doi.org/10.11896/cldb.22070243
  无机非金属及其复合材料 |
三维混凝土细观模型构建与骨料形态对氯离子扩散影响的数值研究
周宇1, 刘清风1,2,*
1 上海交通大学船舶海洋与建筑工程学院,海洋工程国家重点实验室,上海 200240
2 上海市公共建筑和基础设施数字化运维重点实验室,上海 200240
3D Concrete Mesoscopic Modelling and Numerical Study on the Influence of Aggregate Morphology on Chloride Diffusion
ZHOU Yu1, LIU Qingfeng1,2,*
1 State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 10008KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氯离子侵蚀引起的钢筋锈蚀是影响混凝土结构耐久性的首要因素,而骨料自身特性对氯离子在混凝土中的传输行为有重要的影响。本工作提出了一种高效构建细观尺度下混凝土三维几何模型的方法,能够实现工程中常见碎石、卵石和片状骨料的生成和投放。将生成的几何模型进一步应用于氯离子扩散行为预测,并与第三方试验结果进行对比,验证了其可行性与准确性。本工作所提出的三维混凝土细观模型能够实现混凝土几何参数的精细控制,能够对骨料形状、体积分数、粒径以及连续级配等骨料形态学特征对氯离子传输的影响进行较全面的量化分析。此外,本工作还探究了实际中因振捣而导致的骨料不均匀分布对氯离子传输性能的影响。结果表明骨料的曲折度和体积分数的增大会降低氯离子的扩散速率;骨料级配连续的混凝土中小粒径骨料可填充在大粒径骨料的间隙中,相比于单一骨料级配的混凝土,其抗氯性能更高;混凝土振捣而产生的骨料不均匀分布对混凝土耐久性的影响同样不可忽视。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周宇
刘清风
关键词:  混凝土  氯离子  骨料形态  细观尺度  三维模型    
Abstract: The corrosion of steel bars caused by chloride ion erosion is the primary factor affecting the durability of concrete structures, and the characteristics of aggregate have an important influence on the chloride ion transport behavior in concrete. In this study, an efficient method for constructing meso-scalethree-dimensional geometric model of concrete was proposed, which can realize the generation and packing of gravel, pebbles and flake aggregate commonly used in engineering. The generated geometric model was further applied to the prediction of chloride transport behavior, and validated against the third-party experimental data. The three-dimensional concrete mesoscopic model proposed in this work is able to quantify the effect of aggregate morphological characteristics such as aggregate shape, volume fraction, particle size and conti-nuous gradation on chloride ion transport in a comprehensive way. In addition, the influence of uneven aggregate distribution caused by vibration on chloride ion transport was also investigated. The results show that the increase of tortuous degree and volume fraction of aggregate decreases the diffusion rate of chloride ions. Concrete with continuous aggregate gradation, in which aggregate with small particle size can be filled in the gap of aggregate with large particle size, has higher chlorine resistance than concrete with single aggregate gradation. The uneven aggregate distribution caused by vibration has a significant influence on the durability of concrete.
Key words:  concrete    chloride    aggregate shape    meso-scale    3D model
发布日期:  2023-12-19
ZTFLH:  TU528.041  
基金资助: 国家优秀青年科学基金(52222805);上海市自然科学基金(22ZR1431400);上海交通大学深蓝计划(SL2021MS016)
通讯作者:  *刘清风,上海交通大学船舶海洋与建筑工程学院教授、博士研究生导师。Gustavo Co-lonnetti奖章获得者,国家优秀青年科学基金获得者、中国硅酸盐学会青年科技奖获得者。连续三年入选斯坦福大学全球前2%顶尖科学家榜单、中国科协青年人才托举计划、上海市青年科技启明星、上海市浦江学者等。现为Cement and Concrete Composites等5家国际SCI 期刊编委,《建筑材料学报》《材料导报》青年编委;兼任国际材料与结构研究联合会(RILEM)、国际结构混凝土学会(FIB)、英国土木工程学会(ICE)、中国硅酸盐学会、中国建筑学会、中国大坝工程学会等15家学术组织的常务委员/理事。长期致力于混凝土结构耐久性研究,在多离子传输机制、细微观数值表征、电化学修复技术、既有结构寿命预测、纳米材料改性机理等研究方向上取得多项成果,发表论文100余篇,SCI他引3 500余次,12篇一作通讯论文入选ESI高被引。主持国家和省部级纵向课题16项,入选国家和省部级人才计划5项。liuqf@sjtu.edu.cn   
作者简介:  周宇,2021年7月毕业于上海交通大学,获工学学士学位。现为上海交通大学船舶海洋与建筑工程学院硕士研究生,在刘清风教授的指导下开展研究。主要研究方向为骨料形态学及碱骨料反应对混凝土耐久性影响。
引用本文:    
周宇, 刘清风. 三维混凝土细观模型构建与骨料形态对氯离子扩散影响的数值研究[J]. 材料导报, 2023, 37(24): 22070243-7.
ZHOU Yu, LIU Qingfeng. 3D Concrete Mesoscopic Modelling and Numerical Study on the Influence of Aggregate Morphology on Chloride Diffusion. Materials Reports, 2023, 37(24): 22070243-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070243  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22070243
1 Li J P, Li L, Chen H H, et al. Journal of Harbin Institute of Technology, 2017, 49(12), 1 (in Chinese).
李镜培, 李林, 陈浩华, 等. 哈尔滨工业大学学报, 2017, 49(12), 1.
2 Shen X H, Jiang W Q, Hou D, et al. Cement and Concrete Composites, 2019, 104, 103402.
3 Zhang P, Liu Q, Geng W C, et al. Journal of the Chinese Ceramic Society, 2017, 45(2), 235 (in Chinese).
张鹏, 刘庆, 耿文超, 等. 硅酸盐学报, 2017, 45(2), 235.
4 Hu Z, Liu Q F. Materials Reports, 2023, 37(9), 21120077 (in Chinese).
胡哲, 刘清风. 材料导报, 2023, 37(9), 21120077.
5 Liu Q F. Journal of the Chinese Ceramic Society, 2018, 46(8), 1074 (in Chinese).
刘清风. 硅酸盐学报, 2018, 46(8), 1074.
6 Wittmann F H, Roelfstra P E, Sadouki H. Materials Science and Engineering, 1984, 68, 239.
7 Gao Z G, Liu G T. Journal of Tsinghua University (Science and Techno-logy), 2003, 43(5), 710 (in Chinese).
高政国, 刘光廷. 清华大学学报(自然科学版), 2003, 43(5), 710.
8 Adil Amirjanov, Konstantin Sobolev. Particulate Science and Technology, 2008, 26(4), 380.
9 Fang Q, Zhang J H, Huan Y, et al, Engineering Mechanics, 2013, 30(1), 14.
方秦, 张锦华, 还毅, 等. 工程力学, 2013, 30(1), 14.
10 Sheng P Y, Zhang J Z, Ji Z. Composites Science and Technology, 2016, 134, 26.
11 Naderi S, Tu W, Zhang M Z. Cement and Concrete Research, 2021, 140, 106317.
12 Naderi S, Zhang M Z. Powder Technology, 2019, 355(C), 808.
13 Pan S T, Li K, Zhang C H, et al. Materials Reports, 2022, 36(10), 89 (in Chinese).
潘诗婷, 李凯, 张超慧, 等. 材料导报, 2022, 36(10), 89.
14 Qin W, Du C B. Engineering Mechanics, 2012, 29(7), 186 (in Chinese).
秦武, 杜成斌. 工程力学, 2012, 29(7), 186.
15 Caré S, Hervé E. Transport in Porous Media, 2004, 56(2), 119.
16 Tong L Y, Liu Q F. Journal of Building Materials, 2023, 26(10), 1062(in Chinese).
童良玉, 刘清风. 建筑材料学报, 2023, 26(10), 1062.
17 Liu Q F, Feng G L, Xia J, et al. Composite Structures, 2018, 183, 371.
18 Wang C, Zhang T S, Xie X G, et al. Journal of Building Materials, 2022, 25(3), 235(in Chinese).
汪超, 张同生, 谢晓庚, 等. 建筑材料学报, 2022, 25(3), 235.
19 Meng Z Z, Liu Q F, Ukrainczyk N, et al. Cement and Concrete Research, 2024, 175, 107368.
20 Li L J, Liu Q F. Journal of the Chinese Ceramic Society, 2022, 50(8), 2245 (in Chinese).
李林洁, 刘清风. 硅酸盐学报, 2022, 50(8), 2245.
21 Chen W K, Liu Q F. Journal of Hydraulic Engineering, 201, 52(5), 622 (in Chinese).
陈伟康, 刘清风. 水利学报, 2021, 52(5), 622.
22 Liu Q F, Hu Z, Wang X E, et al. Construction and Building Materials, 2022, 325, 126797.
23 Meng Z, Liu Q F, Xia J, et al. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 1854.
24 Liu Q F, Meng Z, Hou D, et al. Engineering Fracture Mechanics, 2022, 276, 108765.
25 Jin W L, Wu H T, Xu C, et al. Progress in Water Resources and Hydropower Science and Technology, 2015, 35(5), 68 (in Chinese).
金伟良, 吴航通, 许晨, 等. 水利水电科技进展, 2015, 35(5), 68.
26 Peng L, Mark G. Chinese Journal of Civil Engineering, 2014, 47(10), 61 (in Chinese).
彭里政俐, Mark G. 土木工程学报, 2014, 47(10), 61.
27 Hou T C, Nguyen V K, Su Y M, et al. Construction and Building Materials, 2017, 133, 397.
28 Jin W L, Zhang D W, Wu K X, et al. Building Structure, 2020, 50(13), 1(in Chinese).
金伟良, 张大伟, 吴柯娴, 等. 建筑结构, 2020, 50(13), 1.
29 Tadayon M H, Shekarchi M, Tadayon M. Construction and Building Materials, 2016, 123, 611.
30 Zhou S X, Han Z, Wei X, et al. Journal of Building Materials, 2018, 21(3), 351 (in Chinese).
周双喜, 韩震, 魏星, 等. 建筑材料学报, 2018, 21(3), 351.
31 Xu J, Li F M. Construction and Building Materials, 2017, 130, 11.
32 Cai Y X, Liu Q F, Yu L W, et al. Cement and Concrete Composites, 2021, 122(7), 104153.
33 Cai Y, Liu Q F, Meng Z, et al. Materials and Structures, 2022, 55, 235.
34 Cai Y, Liu Q F. Journal of Building Engineering, 2023, 79, 107701.
35 Shen X H, Liu Q F, Hu Z, et al. Ocean Engineering, 2019, 189(C), 106350.
36 Tong L Y, Liu Q F. Journal of the Chinese Ceramic Society, 2023, 51(8), 1950 (in Chinese).
童良玉, 刘清风. 硅酸盐学报, 2023, 51(8), 1950.
37 Liu Q F, Shen X H, Šavija B, et al. Cement and Concrete Research, 2023, 165, 107072.
38 Tong L Y, Xiong Q X, Zhang Z, et al. Cement and Concrete Research, 2024, 176, 107351.
39 Arvind K, Suryavanshi R, Narayan S, et al. ACI Meterials Journal, 2002, 99(5), 441.
40 Xiong Q X, Tong L Y, Zhang Z, et al. Cement and Concrete Composites, 2023, 137, 104912.
41 Wang Y Z, Wu L J, Wang Y C. Construction and Building Materials, 2018, 185, 230.
42 Tong L Y, Liu Q F, Xiong Q X, et al. Computer-Aided Civil and Infrastructure Engineering, 2024.
43 Xiong Q X, Tong L Y, Meftah F, et al. Construction and Building Mate-rials, 2024, 441, 133927.
44 Tong L Y, Xiong Q X, Zhang Z, et al. Cement and Concrete Research, 2024, 175, 107351.
45 Xiong Q X, Tong L Y, Meftah F, et al. Construction and Building Materials, 2023, 411, 133927.
46 Tong L Y, Liu Q F. Acta Materiae Compositae Sinica, 2022, 39(11), 5181.
童良玉, 刘清风. 复合材料学报, 2022, 39(11), 5181.
47 Xiao B L, Yang Z Q, Chen D X, et al. Journal of Tianjin University (Natural Science and Engineering Technology), 2019, 52(5), 545 (in Chinese).
肖柏林, 杨志强, 陈得信, 等. 天津大学学报(自然科学与工程技术版), 2019, 52(5), 545.
48 Naderi S, Tu W L, Zhang M Z. Cement and Concrete Research, 2021, 140, 106317.
49 Mohamed A, Xi Y P. Construction and Building Materials, 2018, 191, 69.
[1] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[2] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[3] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[4] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[5] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[6] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[7] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[8] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[9] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[10] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[11] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[12] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[13] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[14] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[15] 刘奎周, 张建仁, 田湘, 黄敦文, 彭晖. 利用H2O2发泡和碳化养护改善RMFC的固碳、力学和保温隔热性能[J]. 材料导报, 2023, 37(23): 22070288-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed