Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22080021-7    https://doi.org/10.11896/cldb.22080021
  金属与金属基复合材料 |
缺口对7A85铝合金拉伸性能和疲劳性能的影响
张焯栋1, 赵君文1,*, 范军2, 张海成3, 高杰维4, 韩瑞鹏1
1 西南交通大学材料科学与工程学院,成都 610031
2 中车长春轨道客车股份有限公司,长春 130000
3 中国第二重型机械集团德阳万航模锻有限责任公司,四川 德阳 618000
4 电子科技大学机械与电气工程学院,成都 611731
Effect of Notch on Tensile Properties and Fatigue Properties of 7A85 Aluminum Alloy
ZHANG Zhuodong1, ZHAO Junwen1,*, FAN Jun2, ZHANG Haicheng3, GAO Jiewei4, HAN Ruipeng1
1 School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 CRRC Changchun Rail Car Company Limited, Changchun 130000, China
3 China National Erzhong Group Deyang Wanhang Die Forging Company Limited, Deyang 618000, Sichuan, China
4 School of Mechanical and Electrical Engineering, University of Electronic Science and Technology, Chengdu 611731, China
下载:  全 文 ( PDF ) ( 19796KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在光滑试样表面预制深度为0.1 mm和0.2 mm的环状缺口,研究了不同缺口尺寸对7A85铝合金拉伸性能和疲劳性能的影响,并分析了7A85铝合金含缺口试样的疲劳断裂机理。结果表明,随着缺口深度由0 mm增加至0.2 mm,7A85铝合金试样的抗拉强度、断后伸长率和疲劳强度分别下降了6%、47.5%、44.4%。缺口对7A85铝合金塑性的影响远大于拉伸强度,且其抗拉强度与疲劳强度呈线性关系。试样疲劳缺口系数随着缺口尺寸和循环次数的增加而增大。7A85铝合金试样的疲劳裂纹源通常是富铁的第二相颗粒,环状缺口根部应力集中促进了多疲劳裂纹源萌生,多个裂纹源同时扩展使得试样有效承载面积快速减少,导致疲劳寿命急剧缩短。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张焯栋
赵君文
范军
张海成
高杰维
韩瑞鹏
关键词:  7A85铝合金  缺口  拉伸性能  疲劳性能  疲劳缺口系数  疲劳断裂机理    
Abstract: Annular notches with a depth of 0.1 mm and 0.2 mm were prefabricated on the surface of smooth specimens, and the effects of different notch sizes on the tensile and fatigue properties of 7A85 aluminum alloy were investigated, the fatigue fracture mechanism of 7A85 aluminum alloy was also analyzed. The results show that with the increase in notch depth from 0 mm to 0.2 mm, the ultimate tensile strength, elongation and fatigue strength of the specimens decrease by 6%, 47.5% and 44.4%, respectively. The notch of the specimens has a much greater effect on the elongation than tensile strength, which is linearly related to fatigue strength. The fatigue notch factor increases with the increase of notch sizes and fatigue cycles. The fatigue crack sources of 7A85 aluminum alloy are usually iron-rich second-phase particles, and the stress concentration at the bottom of the annular notch promotes the initiation of multiple fatigue crack sources. Furthermore, the effective bearing area of the specimen is rapidly reduced by the simultaneous propagation of multiple cracks, leading to a sharp decrease in fatigue life.
Key words:  7A85 aluminum alloy    notch    tensile property    fatigue property    the fatigue notch factor    fatigue fracture mechanism
发布日期:  2023-12-19
ZTFLH:  TG146  
基金资助: 金属材料强度国家重点实验室开放项目(20212317)
通讯作者:  *赵君文,西南交通大学材料科学与工程学院副教授,硕士研究生导师。2009年于华中科技大学材料加工工程专业获得工学博士学位,同年到西南交通大学材料学院工作至今。目前主要从事轨道交通关键材料、先进铸锻技术、相变储能材料等方面的研究工作。在Materials Science and Enginee-ring A、Journal of Materials Processing Technology、《金属学报》等国内外核心学术刊物上发表论文100余篇。swjtuzjw@swjtu.edu.cn   
作者简介:  张焯栋,2020年7月于太原理工大学获得工学学士学位。现为西南交通大学材料科学与工程学院硕士研究生,在赵君文副教授的指导下进行研究。目前主要研究领域为高强铝合金及其疲劳性能。
引用本文:    
张焯栋, 赵君文, 范军, 张海成, 高杰维, 韩瑞鹏. 缺口对7A85铝合金拉伸性能和疲劳性能的影响[J]. 材料导报, 2023, 37(24): 22080021-7.
ZHANG Zhuodong, ZHAO Junwen, FAN Jun, ZHANG Haicheng, GAO Jiewei, HAN Ruipeng. Effect of Notch on Tensile Properties and Fatigue Properties of 7A85 Aluminum Alloy. Materials Reports, 2023, 37(24): 22080021-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080021  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22080021
1 Zhou B, Liu B, Zhang S G. Metals, 2021, 11(5), 718.
2 Prabhu T R. Acta Metallurgical Sinica, 2015, 28(7), 909.
3 Khoukhi D E, Morel F, Saintier N, et al. Procedia Structural Integrity, 2022, 38, 611.
4 Wen F, Xing Z, Tan C, et al. Journal of Physics:Conference Series, 2021, 1802(2), 22079.
5 Xiao J, Yi Y P, Cui J D, et al. Materials Reports, 2018, 32(12), 1998 (in Chinese).
肖靖, 易幼平, 崔金栋, 等.材料导报, 2018, 32(12), 1998.
6 Dai P, Luo X, Yang Y, et al. Metallurgical and Materials Transactions, 2020, 51(6), 3248.
7 Luong H, Hill M R. Materials Science & Engineering A, 2008, 477(1), 208.
8 Gao J W.Research on influence of surface pit defect on the fatigue property of high-speed train axle steel. Ph. D.Thesis, Southwest Jiaotong University, China, 2017(in Chinese).
高杰维.表面凹坑缺陷对高速列车车轴钢疲劳性能影响研究. 博士学位论文, 西南交通大学, 2017.
9 Yan G L, Wang H, Kang G Z, et al. Journal of Southwest Jiaotong University, 2016, 51(5), 944 (in Chinese).
闫桂玲, 王弘, 康国政, 等.西南交通大学学报, 2016, 51(5), 944.
10 Benedetti M, Fontanari V, Santus C, et al. International Journal of Fatigue, 2010, 32(10), 1600.
11 Chen S, Chen K, Peng G, et al. Materials and Design, 2012, 35:, 93.
12 Hirakawa K, Toyama K, Kubota M.International Journal of Fatigue, 1998, 20(2), 135.
13 Ma X L. Mechanical Engineering and Automation, 2019(6), 3 (in Chinese).
马小龙.机械工程与自动化, 2019(6), 3.
14 Li M H, Yang Y Q, Ru J G, et al.The Chinese Journal of Nonferrous Metals.2022, 32(2), 353 (in Chinese).
李茂华, 杨延清, 汝继刚, 等. 中国有色金属学报, 2022, 32(2), 353.
15 Gao Z T, Xiong J J. Fatigue reliability, Beijing University of Aeronautics and Astronautics Press, China, 2000, pp.46 (in Chinese).
高镇同, 熊峻江.疲劳可靠性, 北京航空航天大学出版社, 2000, pp.46.
16 Li H F, Zhang P, Wang B, et al. Journal of Materials Science and Technology, 2022, 100(5), 46.
17 Rathin M, Akhilendra S, Surajit K P. Journal of Materials Engineering and Performance, 2021, 30(10), 12.
18 Zhang H, Wang B, Li G, et al. In:Proceedings of the 5th China Aeronautical Science and Technology Conference. Qingdao, 2022, pp. 209.
19 Han M, Xie H J, Li J R, et al. Journal of Materials Engineering, 2019, 47(6):161 (in Chinese).
韩梅, 谢洪吉, 李嘉荣, 等.材料工程, 2019, 47(6), 161.
20 Wang H, Lu M X, Yi X W, et al. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(9), 1451.
21 Zhong Q P, Zhao Z H. Fractography, Beijing Higher Education Press, China, 2006, pp.270 (in Chinese).
钟群鹏, 赵子华.断口学.北京高等教育出版社, 2006, pp.270.
22 Rice J R. Journal of Applied Mechanics, 1968, 35(2), 121.
[1] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[2] 王恒霖, 曹睿, 程虹蓓, 秦巍, 周双双, 闫英杰. FeCrAl合金板材TIG焊焊接接头的显微组织及性能[J]. 材料导报, 2023, 37(24): 22080047-7.
[3] 温家馨, 李化建, 杨志强, 李子春, 黄法礼, 王振, 易忠来, 谢永江. 高速铁路无砟轨道混凝土动态性能及其评价方法综述[J]. 材料导报, 2023, 37(20): 22010181-10.
[4] 孙冠泽, 曹睿, 周鑫, 王红卫. TNM-TiAl合金室温高周疲劳性能研究[J]. 材料导报, 2023, 37(12): 21090297-7.
[5] 邹田春, 符记, 巨乐章, 李晔. 铺层方式对CFRP-铝合金单搭接胶接接头低速冲击损伤及剩余拉伸性能的影响[J]. 材料导报, 2023, 37(11): 21070166-7.
[6] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[7] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[8] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[9] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[10] 李阳, 蔡长春, 余欢, 徐志锋, 王振军, 张永刚, 钱鑫, 钟俊俊. 国产M50J级碳纤维/铝基复合材料的微观特征及拉伸性能研究[J]. 材料导报, 2022, 36(21): 21030323-6.
[11] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[12] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[13] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[14] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[15] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed