Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21030115-5    https://doi.org/10.11896/cldb.21030115
  金属与金属基复合材料 |
超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能
刘成豪, 陈芙蓉*
内蒙古工业大学材料科学与工程学院,呼和浩特 010000
Fatigue Properties of the VPPA-MIG Welded Joint of the 7A52 Aluminum Alloy Strengthened by Ultrasonic Impact
LIU Chenghao, CHEN Furong*
School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010000, China
下载:  全 文 ( PDF ) ( 5970KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善7A52铝合金VPPA-MIG焊接接头的疲劳性能,本工作通过改变对焊接接头超声冲击的时间延长其疲劳寿命。试验中每条焊接接头各处分别受到2.5 min、5 min、10 min、15 min、30 min和75 min的超声冲击处理。试验利用扫描电镜、透射电镜和X射线衍射仪观察分析焊接接头的表面及晶粒形貌并计算焊接接头的表面晶粒度;利用显微硬度计、X射线应力分析仪和疲劳试验机对焊接接头进行硬度、残余应力及疲劳性能测试,综合分析超声冲击处理对焊接接头疲劳性能的影响。试验结果表明,焊接接头的超声冲击时间为2.5~30 min时,焊接接头处的缺陷明显减少,同时焊接接头表面的晶粒被细化至纳米级,超声冲击时间为30~75 min时,冲击表面出现裂纹;焊接接头经超声冲击处理后,其硬度最大可达140HV,较未处理的焊接接头硬度(100HV)提升40%,同时接头冲击后塑性变形层可达105 μm;焊接接头处的残余应力在超声冲击处理后,由残余拉应力转为残余压应力,且在2.5~30 min时残余压应力呈增长趋势,最大可达-329.2 MPa,在超声冲击时间为30~75 min时残余压应力减小;经超声冲击处理的焊接接头的疲劳性能均有提升,在超声冲击处理时间为30 min时接头疲劳强度最优为87.63 MPa,未经处理的焊接构件疲劳强度为48.8 MPa,疲劳强度提升了79.57%。因此,对焊接接头进行超声冲击处理可强化其疲劳性能,延长焊接构件的使用寿命。本工作希望对7A52铝合金VPPA-MIG焊接构件的广泛使用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘成豪
陈芙蓉
关键词:  超声冲击处理  7A52铝合金  变极性等离子弧-熔化极气体保护复合焊接  显微组织  疲劳性能    
Abstract: To improve the fatigue properties of the 7A52 aluminum alloy VPPA-MIG welded joint, the fatigue life of the welded joint was improved by changing the ultrasonic impact time. In this work, each welded joint was subjected to ultrasonic impact treatment for 2.5 min, 5 min, 10 min, 15 min, 30 min and 75 min. The scanning electron microscopy, the transmission electron microscope and the X-ray diffractometer were used to observe and analyze the surface morphology of welded joints and calculate the surface grain size of welded joints. The hardness, the residual stress and the fatigue properties of welded joints were examined via microhardness test, X-ray stress analysis and fatigue test, respectively. The influence of ultrasonic impact treatment on the fatigue properties of welded joints was analyzed comprehensively. The results show that when the ultrasonic impact time is 2.5—30 min, the defects of the welded joint are obviously reduced, with the grain on the surface of the welded joint refined to the nanometer level. When the ultrasonic impact time is 30—75 min, cracks appear on the impact surface. After ultrasonic impact treatment, the hardness of welded joints can reach 140HV, which is 40% higher than that of untreated welding joint, and the plastic deformation layer can reach 105 μm. Moreover, after ultrasonic impact treatment, the residual stress of welded joint changes from residual tensile stress to residual compressive stress, and the residual compressive stress increases in 2.5—30 min, with the maximum value of -329.2 MPa. When the ultrasonic impact time is 30—75 min, the residual compressive stress decreases. The fatigue strength of the welded joints treated by ultrasonic impact treatment are significantly improved. When the ultrasonic impact treatment time is 30 min, the maximum fatigue strength of the joints are 87.63 MPa, the fatigue strength of untreated welded members are 48.8 MPa and the fatigue strength are improved by 79.57%. Therefore, ultrasonic impact treatment on welded joint can enhance its fatigue performance and prolong the service life of welded components. Through this work, we hope to provide a theoretical basis for the wide use of 7A52 aluminum alloy VPPA-MIG welding components.
Key words:  ultrasonic impact treatment    7A52 aluminum alloy    VPPA-MIG    microstructure    fatigue property
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TG404  
基金资助: 国家自然科学基金(51165026;51765053)
通讯作者:  *20191100203@imut.edu.cn   
作者简介:  刘成豪,本科毕业于吉林化工学院,硕士就读于内蒙古工业大学,主要从事铝合金焊接及铝合金焊接接头改性方面的科研工作。
陈芙蓉,工学博士,现任内蒙古工业大学材料科学与工程学院教授。2002年6月毕业于天津大学材料科学与工程学院并获得材料加工工程专业工学博士学位。2004年12月被批准为博士研究生导师。中国机械工程学会焊接学会第十届焊接力学与结构设计制造专业委员会副主任。任《焊接学报》编委、内蒙古焊接学会副理事长、国家自然科学基金委员会评审专家。在国内外重要学术期刊发表学术论文100余篇。
引用本文:    
刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
LIU Chenghao, CHEN Furong. Fatigue Properties of the VPPA-MIG Welded Joint of the 7A52 Aluminum Alloy Strengthened by Ultrasonic Impact. Materials Reports, 2022, 36(15): 21030115-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030115  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21030115
1 Chen C, Chen F R, Zhang H J. Rare Metal Materials and Engineering, 2018, 47(9), 2637.
2 Song C Q, Dong S Y, He P, et al. Procedia Manufacturing, 2019, 37, 294.
3 Chen F R, Liu C H, Li N. Transactions of the China Welding Institution, 2020, 41(9), 39(in Chinese).
陈芙蓉, 刘成豪, 李男. 焊接学报, 2020, 41(9), 39.
4 Wang W Q, Zuo H Y, Yang H, et al. Journal of Chongqing University of Technology (Natural Science), 2021, 35(11), 81(in Chinese).
王维青, 左浩越, 杨宏, 等. 重庆理工大学学报(自然科学版), 2021, 35(11), 81.
5 Jia C L, Chen F R. Materials Reports B:Research Papers, 2018, 32(8), 111(in Chinese).
贾翠玲, 陈芙蓉. 材料导报:研究篇, 2018, 32(8), 111.
6 Chen F R, Liu C H. Materials, 2021, 14, 2742.
7 Xu B, Jiang P, Geng S N, et al. Materials & Design, 2021, 203, 109538.
8 Wu W, Zhang G C, Qi H J, et al. Journal of Chongqing University of Technology (Natural Science), 2020, 34(9), 167(in Chinese).
吴玮, 张广川, 戚浩杰, 等. 重庆理工大学学报(自然科学版), 2020, 34(9), 167.
9 Mordyuk B, Prokopenko G, Milman Y V, et al. Materials Science and Engineering A-Steructural Materials Properties Microstructure and Proces-sing, 2013, 563, 138.
10 Kumar P, Mahobia G S, Chattopadhyay K. Key Engineering Materials, 2019, 813, 122.
11 Fueki R, Takahashi K. Optics & Laser Technology, 2021, 134, 106605.
12 Alalkawi H J M, Alhamdany A A, Hassan M R A. Al-Nahrain Journal for Engineering Sciences, 2018, 21(1), 141.
13 Sun Z B, Han Y Q, Du M H, et al. Rare Metal Materials and Enginee-ring, 2020, 49(8), 2674(in Chinese).
孙振邦, 韩永全, 杜茂化, 等. 稀有金属材料与工程, 2020, 49(8), 2674.
14 Han Y Q, Sun Z B, Du M H, et al. Electric Welding Machine, 2020, 50(9), 221 (in Chinese).
韩永全, 孙振邦, 杜茂华, 等. 电焊机, 2020, 50(9), 221.
15 Wang L S, Ye X X, Liu T, et al. Materials Reports B:Research Papers, 2015, 29(9), 71(in Chinese).
王铃声, 叶肖鑫, 刘涛, 等. 材料导报:研究篇, 2015, 29(9), 71.
16 Wang G Y, Wang H D, Zhang Y B, et al. Materials Reports A:Review Papers, 2016, 30(5), 87(in Chinese).
王桂阳, 王海斗, 张玉波, 等. 材料导报:综述篇, 2016, 30(5), 87.
17 He K, Chen N F, Wang C J, et al. Crystal Research and Technology, 2018, 53(2), 1700157.
18 Muniz F T L, Miranda M A R, Morilla dos Santos C, et al. Acta Crystallographica Section A: Foundations and Advances, 2016, 72(3), 385.
19 František N, Michal P, Libor T, et al. Materials Today: Proceedings, 2020, 32, 174.
20 Hu X D, Ma C B, Yang Y C, et al. International Journal of Steel Structures, 2020, 20(3), 1014.
21 Liu C, Shen J B, Yan J L, et al. Journal of Materials Engineering and Performance, 2020, 29(3), 1820.
[1] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[2] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[3] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[4] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[5] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[6] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[7] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[8] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[9] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[10] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[11] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[12] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[13] 葛晓宇, 闫二虎, 陈运灿, 黄仁君, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe渗氢合金成分优化设计和氢传输性能研究[J]. 材料导报, 2022, 36(18): 21060218-6.
[14] 李萧, 胡水平, 蔡钰. 固溶温度对碳烯/6061铝基复合材料轧制薄板组织与力学性能的影响[J]. 材料导报, 2022, 36(18): 21010123-6.
[15] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed