Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21050094-8    https://doi.org/10.11896/cldb.21050094
  金属与金属基复合材料 |
Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展
林方敏, 邢梅, 唐立志, 武学俊, 章小峰*, 黄贞益
安徽工业大学冶金工程学院,安徽 马鞍山 243002
Research Progress of Fe-Mn-Al-C Low-density Steels and Their Strengthening Mechanisms
LIN Fangmin, XING Mei, TANG Lizhi, WU Xuejun, ZHANG Xiaofeng*, HUANG Zhenyi
School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
下载:  全 文 ( PDF ) ( 17828KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 汽车行业的迅速发展使得能源消耗、环境污染等问题日益严重,而开发高强度且轻量化的汽车用钢对节能减排具有重要意义。目前正在研发的第三代先进高强钢包括轻质(Lightweight)钢、Q&P(Quenching and partitioning)钢和中锰钢(Mn质量分数为5%~10%)。其中,Fe-Mn-Al-C系低密度高强钢由于Al元素的加入,在密度降低的同时保持着良好的力学性能,满足第三代汽车用钢对轻量化的要求。同时,由于大量Al、Mn和C元素的添加,Fe-Mn-Al-C系低密度钢的冶炼连铸、微观结构、变形机制、加工过程及应用性能与传统钢种大不相同。
本文系统阐述了Fe-Mn-Al-C系低密度钢的成分设计及其中合金元素的作用,介绍了低密度钢的微观组织结构特征;重点讨论了单一铁素体钢、奥氏体基钢、奥氏体基双相钢和铁素体基双相钢的各种强韧化机制,包括固溶强化、细晶强化、沉淀强化及其独特的应变硬化机制,如相变诱导塑性(TRIP)、孪晶诱导塑性(TWIP)、微带诱导塑性(MBIP)、剪切带诱导塑性(SIP)和动态滑移带细化(DSBR)等;并就层错能(SFE)对奥氏体钢变形机制产生的影响进行了总结;最后,对Fe-Mn-Al-C系低密度钢的强韧化机制研究进行展望,为后续研究者的工作提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林方敏
邢梅
唐立志
武学俊
章小峰
黄贞益
关键词:  Fe-Mn-Al-C低密度钢  强韧化机制  层错能  显微组织    
Abstract: With the rapid development of automotive industry, the problems of energy consumption and environmental pollution have been more and more serious, and the development of high-strength and lightweight automotive steel is of great significance to energy saving and emission reduction. The third generation of advanced high-strength steels currently under development include lightweight steels, Q&P (Quenching and partitioning) steels and medium manganese steels (with Mn mass fraction of 5%—10%). Among them, due to the addition of Al elements, Fe-Mn-Al-C low-density high-strength steels get reduced density, while maintaining good mechanical properties, which meets the lightweight requirements of third generation automotive steel. At the same time, owing to the addition of a large amount of Al, Mn and C elements, the smelting and continuous casting, microstructure, deformation mechanism, processing process and application properties of Fe-Mn-Al-C low-density steels are quite different from those of traditional steel grades.
This paper systematically describes the composition design of Fe-Mn-Al-C low-density steels and the role of alloy elements, and introduces the microstructural characteristics of low density steels.The discussion focuses on various strengthening mechanisms of single ferrite, austenitic, austenitic-based dual-phase and ferritic-based dual-phase steels, including solid solution strengthening, fine grain strengthening, precipitation strengthening, and their unique strain hardening mechanisms,such as phase transformation induced plasticity (TRIP), twinning induced plasticity (TWIP), microband induced plasticity (MBIP), shear band induced plasticity (SIP), dynamic slip band refinement (DSBR), etc. The effect of stacking fault energy (SFE) on the deformation mechanism of austenitic steels is summarized. Finally, the study of the strengthening mechanism of Fe-Mn-Al-C low density steels is prospected to provide a reference for the work of subsequent researchers.
Key words:  Fe-Mn-Al-C low-density steel    strengthening mechanism    stacking fault energy    microstructure
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51674004);安徽省自然科学基金(2108085ME143)
通讯作者:  *章小峰,安徽工业大学冶金工程学院副教授、硕士研究生导师。 1998年本科毕业于武汉科技大学,2008年7月在华中科技大学材料加工工程专业取得博士学位,同年8月到安徽工业大学任职。任职期间,于2013—2016 年在南京理工大学进行博士后研究工作。主要从事先进汽车用钢材料组织和性能控制方面的研究工作。在先进钢铁材料领域发表论文30余篇。egzxf@ahut.edu.cn   
作者简介:  林方敏,本科毕业于马鞍山学院材料成型及控制工程专业,现为安徽工业大学冶金工程学院研究生,在章小峰老师的指导下进行研究。目前主要研究领域为先进钢铁材料组织和性能控制。
引用本文:    
林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
LIN Fangmin, XING Mei, TANG Lizhi, WU Xuejun, ZHANG Xiaofeng, HUANG Zhenyi. Research Progress of Fe-Mn-Al-C Low-density Steels and Their Strengthening Mechanisms. Materials Reports, 2023, 37(5): 21050094-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050094  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21050094
1 Radhakanta R. JOM, 2014, 66(9), 1.
2 Park G, Nam C H, Zargaran A, et al. Scripta Materialia, 2019, 165, 68.
3 Kim H. Scripta Materialia, 2019, 160, 29.
4 Song W, Ingendahl T, Bleck W. Acta Metallurgica Sinica (English Letters), 2014, 27(3), 546.
5 Cheng W C, Cheng C Y, Hsu C W, et al. Materials Science & Engineering A, 2015, 642, 128.
6 Kim H, Suh D W, Kim N J. Science and Technology of Advanced Materials, 2013, 14(1), 1.
7 Gutierrez-Urrutia I, Raabe D. Materials Science and Technology, 2014, 30(9), 1099.
8 Raabe D, Springer H, Gutierrez-Urrutia I, et al. JOM, 2014, 66(9), 1845.
9 Gutierrez-Urrutia I, Raabe D. Scripta Materialia, 2013, 68(6), 343.
10 Ding H, Wu Z Q, Han D, et al. Materials Science Forum, 2017, 879, 436.
11 Zambrano O A. Journal of Materials Science, 2018, 53(20), 14003.
12 Chen S, Rana R. High-performance ferrous alloys, Springer, Cham, 2021, pp. 211.
13 Schneider A, Falat L, Sauthoff G, et al. Intermetallics, 2005, 13, 1322.
14 Ivan Gutierrez-Urrutia. Reference Module in Materials Science and Materials Engineering, 2022, 2, 106.
15 Castan C, Montheillet F, Perlade A. Scripta Materialia, 2013, 68(6), 360.
16 Gutierrez-Urrutia I. ISIJ International, 2021, 61(1), 16.
17 Chen S P, Radhakanta R, Haldar A, et al. Progress in Materials Science, 2017, 89, 345.
18 Bartlett L, Aken D V. JOM, 2014, 66, 1770.
19 Cheng W C. JOM, 2014, 66(9), 1809.
20 Zhang L F, Song R B, Zhao C, et al. Materials Science and Engineering: A, 2015, 640, 225.
21 Shin S Y, Lee H, Han S Y, et al. Metallurgical and Materials Transactions A, 2010, 41, 138.
22 Zuazo I, Hallstedt B, Lindahl B, et al. JOM, 2014, 66, 1747.
23 Morris D G, Muñoz-Morris M A, Requejo L M. Materials Science & Engineering A, 2007, 460, 163.
24 Baligidad R G, Prasad K S. Materials Science and Technology, 2007, 23, 38.
25 Herrmann J, Inden G, Sauthoff G. Acta Materialia, 2003, 51(10), 2847.
26 Xu G, Gan X L, Ma G J, et al. Materials and Design, 2010, 31(6), 2891.
27 Altstetter C J, Bentley A P, Fourie J W, et al. Materials Science and Engineering: A, 1986, 82, 13.
28 Zhang J L, Raabe D, Tasan C C. Acta Materialia, 2017, 141, 1.
29 Etienne A, Massardier-Jourdan V, Cazottes S, et al. Metallurgical and Materials Transactions A, 2014, 45(1), 324.
30 Kim H, Suh D W, Kim J N. Sciense and Technology of Advanced Materials, 2013, 14, 1.
31 Rana R, Lahaye C, Ray R K. The Minerals, Metals Materials & Society, 2014, 66, 1734.
32 Wang Z C. Journal of Iron and Steel Research, 1994(1), 67 (in Chinese).
王兆昌. 钢铁研究学报, 1994(1), 67.
33 Lai H J, Wan C M. Journal of Materials Science, 1989, 24(7), 2449.
34 Yoo J D, Hwang S W, Park K T. Metallurgical and Materials Transactions A, 2009, 40(7), 1.
35 Frommeyer G, Brüx U. Steel Research International, 2006, 77(9-10), 627.
36 Welsch E, Ponge D, Haghighat S M H, et al. Acta Materialia, 2016, 116, 188.
37 Yoo J D, Park K T. Materials Science and Engineering: A, 2008, 496, 417.
38 Park K T. Scripta Materialia, 2013, 68(6), 375.
39 Ding Y, Hu X. Journal of Materials and Metallurgy, 2018, 17(4), 239 (in Chinese).
丁桦, 胡晓. 材料与冶金学报, 2018, 17(4), 239.
40 Frommeyer G, Drewes E J, Engl B. Revue de Métallurgie, 2000, 97(10), 1.
41 Saeed-Akbari A, Imlau J, Prahl U, et al. Metallurgical and Materials Transactions A, 2009, 40(13), 3076.
42 Song W W, Ingendahl T, Bleck W. Acta Metallurgica Sinica(English Letters), 2014, 27(3), 546.
43 Imandoust A, Zarei Hanzaki A, Heshmati-Manesh S, et al. Materials and Design, 2014, 53, 99.
44 Eskandari M, Yadegari-Dehnavi M R, Zarei-Hanzaki A. Optics and Lasers in Engineering, 2015, 67, 1.
45 Seok Su Sohn, Kayoung Choi, Jai-Hyun Kwak, et al. Acta Materialia, 2014, 78, 181.
46 Si Woo Hwang, Jung Hoon Ji, Eui Gil Lee, et al. Materials Science and Engineering: A, 2011, 528, 5196.
47 Min Chul Ha, Jin-Mo Koo, Jae-Kon Lee, et al. Materials Science and Engineering: A, 2013, 586, 276.
48 Seok Su Sohn, Hyejin Song, Byeong-Chan Suh, et al. Acta Materialia, 2015, 96, 301.
49 Yang F Q, Song R B, Li Y P, et al. Materials and Design, 2015, 76, 32.
50 Gutierrez-Urrutia I, Raabe D. Acta Materialia, 2012, 60, 5791.
51 Ma B, Li C S, Zheng J J, et al. Materials and Design, 2016, 92, 313.
52 Lee S, Estrin Y, De Cooman B C. Metallurgical and Materials Transactions A, 2014, 45(2), 717.
53 Mahato B, Shee S K, Sahu T, et al. Acta Materialia, 2015, 86, 69.
54 Dumay A, Chateau J P, Allain S, et al. Materials Science and Engineering: A, 2008, 483-484, 184.
55 Lehnhoff G R, Findley K O, De Cooman B C. Scripta Materialia, 2014, 92, 19.
56 Limmer K R, Medvedeva J E, van Aken D C, et al. Computational Materials Science, 2015, 99, 253.
57 Dini G, Najafizadeh A, Monir-Vaghefi S M, et al. Materials Sciense and Technology, 2010, 26(2), 181.
58 Lee T, Koyama M, Tsuzaki K, et al. Materials Letters, 2012, 75, 169.
59 Yang M X, Yuan F P, Xie Q G, et al. Acta Materialia, 2016, 109, 213.
60 Wu Z Q, Ding H, Li H Y, et al. Materials Science and Engineering: A, 2013, 584, 1.
61 Zhang L F, Song R B, Zhao C, et al. Materials Science and Engineering: A, 2015, 643, 183.
62 Liu M X, Song C J, Cui Z S. Journal of Materials Science & Technology, 2021, 78, 247.
63 Samei J, Green E D, Cheng J, et al. Materials & Design, 2016, 92, 1028.
64 Chang-Hyo Seo, Ki Hyuk Kwon, Kayoung Choi, et al. Scripta Materialia, 2012, 66(8), 519.
65 Tirumalasetty G K, van Huis M A, Kwakernaak C, et al. Acta Materialia, 2012, 60(3), 1311.
[1] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[2] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[3] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[4] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[5] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[6] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[7] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[8] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[9] 韩基鸿, 张洋, 马亚玺, 刘力源, 杨忠波, 张中武. 纳米孪晶强化合金制备技术与力学性能研究进展[J]. 材料导报, 2022, 36(24): 21050108-14.
[10] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[11] 葛晓宇, 闫二虎, 陈运灿, 黄仁君, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe渗氢合金成分优化设计和氢传输性能研究[J]. 材料导报, 2022, 36(18): 21060218-6.
[12] 李萧, 胡水平, 蔡钰. 固溶温度对碳烯/6061铝基复合材料轧制薄板组织与力学性能的影响[J]. 材料导报, 2022, 36(18): 21010123-6.
[13] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[14] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[15] 胡勇, 刘飞, 刘员员, 赵龙志, 焦海涛, 唐延川, 刘德佳. AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的组织和耐腐蚀性研究[J]. 材料导报, 2022, 36(14): 22010093-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed