摘要 汽车行业的迅速发展使得能源消耗、环境污染等问题日益严重,而开发高强度且轻量化的汽车用钢对节能减排具有重要意义。目前正在研发的第三代先进高强钢包括轻质(Lightweight)钢、Q&P(Quenching and partitioning)钢和中锰钢(Mn质量分数为5%~10%)。其中,Fe-Mn-Al-C系低密度高强钢由于Al元素的加入,在密度降低的同时保持着良好的力学性能,满足第三代汽车用钢对轻量化的要求。同时,由于大量Al、Mn和C元素的添加,Fe-Mn-Al-C系低密度钢的冶炼连铸、微观结构、变形机制、加工过程及应用性能与传统钢种大不相同。 本文系统阐述了Fe-Mn-Al-C系低密度钢的成分设计及其中合金元素的作用,介绍了低密度钢的微观组织结构特征;重点讨论了单一铁素体钢、奥氏体基钢、奥氏体基双相钢和铁素体基双相钢的各种强韧化机制,包括固溶强化、细晶强化、沉淀强化及其独特的应变硬化机制,如相变诱导塑性(TRIP)、孪晶诱导塑性(TWIP)、微带诱导塑性(MBIP)、剪切带诱导塑性(SIP)和动态滑移带细化(DSBR)等;并就层错能(SFE)对奥氏体钢变形机制产生的影响进行了总结;最后,对Fe-Mn-Al-C系低密度钢的强韧化机制研究进行展望,为后续研究者的工作提供参考。
Abstract: With the rapid development of automotive industry, the problems of energy consumption and environmental pollution have been more and more serious, and the development of high-strength and lightweight automotive steel is of great significance to energy saving and emission reduction. The third generation of advanced high-strength steels currently under development include lightweight steels, Q&P (Quenching and partitioning) steels and medium manganese steels (with Mn mass fraction of 5%—10%). Among them, due to the addition of Al elements, Fe-Mn-Al-C low-density high-strength steels get reduced density, while maintaining good mechanical properties, which meets the lightweight requirements of third generation automotive steel. At the same time, owing to the addition of a large amount of Al, Mn and C elements, the smelting and continuous casting, microstructure, deformation mechanism, processing process and application properties of Fe-Mn-Al-C low-density steels are quite different from those of traditional steel grades. This paper systematically describes the composition design of Fe-Mn-Al-C low-density steels and the role of alloy elements, and introduces the microstructural characteristics of low density steels.The discussion focuses on various strengthening mechanisms of single ferrite, austenitic, austenitic-based dual-phase and ferritic-based dual-phase steels, including solid solution strengthening, fine grain strengthening, precipitation strengthening, and their unique strain hardening mechanisms,such as phase transformation induced plasticity (TRIP), twinning induced plasticity (TWIP), microband induced plasticity (MBIP), shear band induced plasticity (SIP), dynamic slip band refinement (DSBR), etc. The effect of stacking fault energy (SFE) on the deformation mechanism of austenitic steels is summarized. Finally, the study of the strengthening mechanism of Fe-Mn-Al-C low density steels is prospected to provide a reference for the work of subsequent researchers.
1 Radhakanta R. JOM, 2014, 66(9), 1. 2 Park G, Nam C H, Zargaran A, et al. Scripta Materialia, 2019, 165, 68. 3 Kim H. Scripta Materialia, 2019, 160, 29. 4 Song W, Ingendahl T, Bleck W. Acta Metallurgica Sinica (English Letters), 2014, 27(3), 546. 5 Cheng W C, Cheng C Y, Hsu C W, et al. Materials Science & Engineering A, 2015, 642, 128. 6 Kim H, Suh D W, Kim N J. Science and Technology of Advanced Materials, 2013, 14(1), 1. 7 Gutierrez-Urrutia I, Raabe D. Materials Science and Technology, 2014, 30(9), 1099. 8 Raabe D, Springer H, Gutierrez-Urrutia I, et al. JOM, 2014, 66(9), 1845. 9 Gutierrez-Urrutia I, Raabe D. Scripta Materialia, 2013, 68(6), 343. 10 Ding H, Wu Z Q, Han D, et al. Materials Science Forum, 2017, 879, 436. 11 Zambrano O A. Journal of Materials Science, 2018, 53(20), 14003. 12 Chen S, Rana R. High-performance ferrous alloys, Springer, Cham, 2021, pp. 211. 13 Schneider A, Falat L, Sauthoff G, et al. Intermetallics, 2005, 13, 1322. 14 Ivan Gutierrez-Urrutia. Reference Module in Materials Science and Materials Engineering, 2022, 2, 106. 15 Castan C, Montheillet F, Perlade A. Scripta Materialia, 2013, 68(6), 360. 16 Gutierrez-Urrutia I. ISIJ International, 2021, 61(1), 16. 17 Chen S P, Radhakanta R, Haldar A, et al. Progress in Materials Science, 2017, 89, 345. 18 Bartlett L, Aken D V. JOM, 2014, 66, 1770. 19 Cheng W C. JOM, 2014, 66(9), 1809. 20 Zhang L F, Song R B, Zhao C, et al. Materials Science and Engineering: A, 2015, 640, 225. 21 Shin S Y, Lee H, Han S Y, et al. Metallurgical and Materials Transactions A, 2010, 41, 138. 22 Zuazo I, Hallstedt B, Lindahl B, et al. JOM, 2014, 66, 1747. 23 Morris D G, Muñoz-Morris M A, Requejo L M. Materials Science & Engineering A, 2007, 460, 163. 24 Baligidad R G, Prasad K S. Materials Science and Technology, 2007, 23, 38. 25 Herrmann J, Inden G, Sauthoff G. Acta Materialia, 2003, 51(10), 2847. 26 Xu G, Gan X L, Ma G J, et al. Materials and Design, 2010, 31(6), 2891. 27 Altstetter C J, Bentley A P, Fourie J W, et al. Materials Science and Engineering: A, 1986, 82, 13. 28 Zhang J L, Raabe D, Tasan C C. Acta Materialia, 2017, 141, 1. 29 Etienne A, Massardier-Jourdan V, Cazottes S, et al. Metallurgical and Materials Transactions A, 2014, 45(1), 324. 30 Kim H, Suh D W, Kim J N. Sciense and Technology of Advanced Materials, 2013, 14, 1. 31 Rana R, Lahaye C, Ray R K. The Minerals, Metals Materials & Society, 2014, 66, 1734. 32 Wang Z C. Journal of Iron and Steel Research, 1994(1), 67 (in Chinese). 王兆昌. 钢铁研究学报, 1994(1), 67. 33 Lai H J, Wan C M. Journal of Materials Science, 1989, 24(7), 2449. 34 Yoo J D, Hwang S W, Park K T. Metallurgical and Materials Transactions A, 2009, 40(7), 1. 35 Frommeyer G, Brüx U. Steel Research International, 2006, 77(9-10), 627. 36 Welsch E, Ponge D, Haghighat S M H, et al. Acta Materialia, 2016, 116, 188. 37 Yoo J D, Park K T. Materials Science and Engineering: A, 2008, 496, 417. 38 Park K T. Scripta Materialia, 2013, 68(6), 375. 39 Ding Y, Hu X. Journal of Materials and Metallurgy, 2018, 17(4), 239 (in Chinese). 丁桦, 胡晓. 材料与冶金学报, 2018, 17(4), 239. 40 Frommeyer G, Drewes E J, Engl B. Revue de Métallurgie, 2000, 97(10), 1. 41 Saeed-Akbari A, Imlau J, Prahl U, et al. Metallurgical and Materials Transactions A, 2009, 40(13), 3076. 42 Song W W, Ingendahl T, Bleck W. Acta Metallurgica Sinica(English Letters), 2014, 27(3), 546. 43 Imandoust A, Zarei Hanzaki A, Heshmati-Manesh S, et al. Materials and Design, 2014, 53, 99. 44 Eskandari M, Yadegari-Dehnavi M R, Zarei-Hanzaki A. Optics and Lasers in Engineering, 2015, 67, 1. 45 Seok Su Sohn, Kayoung Choi, Jai-Hyun Kwak, et al. Acta Materialia, 2014, 78, 181. 46 Si Woo Hwang, Jung Hoon Ji, Eui Gil Lee, et al. Materials Science and Engineering: A, 2011, 528, 5196. 47 Min Chul Ha, Jin-Mo Koo, Jae-Kon Lee, et al. Materials Science and Engineering: A, 2013, 586, 276. 48 Seok Su Sohn, Hyejin Song, Byeong-Chan Suh, et al. Acta Materialia, 2015, 96, 301. 49 Yang F Q, Song R B, Li Y P, et al. Materials and Design, 2015, 76, 32. 50 Gutierrez-Urrutia I, Raabe D. Acta Materialia, 2012, 60, 5791. 51 Ma B, Li C S, Zheng J J, et al. Materials and Design, 2016, 92, 313. 52 Lee S, Estrin Y, De Cooman B C. Metallurgical and Materials Transactions A, 2014, 45(2), 717. 53 Mahato B, Shee S K, Sahu T, et al. Acta Materialia, 2015, 86, 69. 54 Dumay A, Chateau J P, Allain S, et al. Materials Science and Engineering: A, 2008, 483-484, 184. 55 Lehnhoff G R, Findley K O, De Cooman B C. Scripta Materialia, 2014, 92, 19. 56 Limmer K R, Medvedeva J E, van Aken D C, et al. Computational Materials Science, 2015, 99, 253. 57 Dini G, Najafizadeh A, Monir-Vaghefi S M, et al. Materials Sciense and Technology, 2010, 26(2), 181. 58 Lee T, Koyama M, Tsuzaki K, et al. Materials Letters, 2012, 75, 169. 59 Yang M X, Yuan F P, Xie Q G, et al. Acta Materialia, 2016, 109, 213. 60 Wu Z Q, Ding H, Li H Y, et al. Materials Science and Engineering: A, 2013, 584, 1. 61 Zhang L F, Song R B, Zhao C, et al. Materials Science and Engineering: A, 2015, 643, 183. 62 Liu M X, Song C J, Cui Z S. Journal of Materials Science & Technology, 2021, 78, 247. 63 Samei J, Green E D, Cheng J, et al. Materials & Design, 2016, 92, 1028. 64 Chang-Hyo Seo, Ki Hyuk Kwon, Kayoung Choi, et al. Scripta Materialia, 2012, 66(8), 519. 65 Tirumalasetty G K, van Huis M A, Kwakernaak C, et al. Acta Materialia, 2012, 60(3), 1311.