Composition Optimization Design and Hydrogen Transport Property of Nb-Ti-Fe Hydrogen Permeation Alloys
GE Xiaoyu1, YAN Erhu1,2,*, CHEN Yuncan1, HUANG Renjun1, CHENG Jian1, WANG Hao1, LIU Wei1, CHU Hailiang1, ZOU Yongjin1, XU Fen1, SUN Lixian1,*
1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China 2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract: Currently, the development of alloy membrane materials with cheap and excellent hydrogen permeability around ⅤB group metals (Nb, V and Ta) and their alloys has become a hot research topic. Hence, the Nb-Ti-Fe hydrogen permeation alloy system was studied in detail in this work, especially Nb10Ti50+xFe40-x and Nb15Ti45+xFe40-x(x=0, 5, 10) alloys. Firstly, the microstructure characteristics were analyzed by SEM, EDS and XRD. Based on this, the hydrogen transport property of these alloys, such as hydrogen permeability, hydrogen diffusivity and hydrogen solubility, were measured using the hydrogen permeability tester and the Devanathan-Stachurski electrolytic cell. Finally, the intrinsic relationship among alloy composition, microstructure and hydrogen transport property was clarified. The results show that the six Nb-Ti-Fe ternary alloys all exhibit the characteristics of dual-phase structure, consisting of TiFe phase and α-Nb phase, although the individual component contains a small amount of NbFe phase. Furthermore, as the Ti/Fe ratio increases (i.e., x value↑), the volume fraction of the eutectic phase increases. On the contrary, the content of the primary TiFe phase decreases. With the above changes, the hydrogen permeability gradually increases, but the hydrogen embrittlement resistance becomes poor. The above results further confirm that the primary TiFe phase and the eutectic phase in the microstructure play the role of hydrogen embrittlement resistance, while the α-Nb phase mainly contributes to hydrogen permeability. The Nb10Ti55-Fe35 alloy exhibits the optimal hydrogen permeability at 673 K, i.e., its hydrogen permeability coefficient is 3.28×10-8 mol H2 m-1·s-1·Pa-1/2, which is 2.1 times than that of pure Pd, and also far better than that of the Nb12Ti52Fe36 (2.9×10-8 mol H2 m-1·s-1·Pa-1/2) reported in the literature. This work proves that the microstructure of alloys can be adjusted through the composition optimization design, so as to obtain Nb-Ti-Fe hydrogen permeation alloy with good comprehensive properties.
作者简介: 葛晓宇,2020年6月毕业于西南科技大学,获得工学学士学位。现为桂林电子科技大学材料科学与工程学院硕士研究生,在闫二虎教授的指导下进行研究,目前主要研究领域为新型渗氢合金材料。孙立贤,桂林电子科技大学教授、博士研究生导师,俄罗斯自然科学院外籍院士,中科院优秀百人计划,广西优秀八桂学者,英国皇家化学会会士。1994年获湖南大学理学博士学位(师从俞汝勤院士);1995.2—1995.4 日本产业技术综合研究所客座研究员 (STA),1995.5—1996.10获洪堡基金(AvH)资助在德国耶拿大学无机分析化学研究所进行合作研究;1996.10—2002.9 任日本工业技术院特别研究员(AIST)/产业技术研究员(NEDO)。在Energy & Environmental Science、Journal of Materials Chemistry A、Biosensors & Bioelectronics、Crystal Growth & Design、Journal of Physical Chemistry C、Dalton Transactions、International Journal of Hydrogen Energy等国内外重要学术刊物发表学术论文330余篇(其中SCI、EI收录300余篇)。闫二虎,桂林电子科技大学教授、硕士研究生导师。2009年7月本科毕业于河北科技大学,2011年7月和2014年7月在哈尔滨工业大学分别取得工学硕士学位和工学博士学位,毕业后在桂林电子科技大学工作。2018年11月至2019年11月获广西高校优秀教师出国留学深造项目资助赴加拿大国家科学研究院信息-能源材料研究所进行为期一年的访学研究工作。主要从事合金定向凝固理论和新型能源材料方面的研究,主要包含相图热力学计算、多相合金凝固行为和新型渗氢/储氢性能的研究。近五年来在Journal of Membrane Science、Journal of Alloys and Compounds、International Journal of Hydrogen Energy、Journal of Crystal Growth、International Journal of Materials Research、《金属学报》等刊物上发表SCI文章 60余篇,申请专利10余项。
引用本文:
葛晓宇, 闫二虎, 陈运灿, 黄仁君, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe渗氢合金成分优化设计和氢传输性能研究[J]. 材料导报, 2022, 36(18): 21060218-6.
GE Xiaoyu, YAN Erhu, CHEN Yuncan, HUANG Renjun, CHENG Jian, WANG Hao, LIU Wei, CHU Hailiang, ZOU Yongjin, XU Fen, SUN Lixian. Composition Optimization Design and Hydrogen Transport Property of Nb-Ti-Fe Hydrogen Permeation Alloys. Materials Reports, 2022, 36(18): 21060218-6.
1 Hydrogen Association. Hydrogen technology, Science Press, China, 2009, pp.1(in Chinese). 氢能协会. 氢能技术, 科学出版社, 2009,pp.1. 2 Sun Y, Su W, Zhou L. Hydrogen fuel, Chemical Industry Press, China, 2005, pp.1(in Chinese). 孙艳, 苏伟, 周理.氢燃料, 化学工业出版社, 2005, pp.1. 3 Liu Z W, Wang Z M, Liu F, et al. Rare Metal Materials and Enginee-ring, 2011, 40(6), 1033(in Chinese). 刘战伟,王仲民,刘菲,等.稀有金属材料与工程,2011,40(6),1033. 4 Ishikawa K, Seki Y, Kita K, et al. International Journal of Hydrogen Energy, 2011, 36, 1784. 5 Dolan M D. Journal of Membrane Science, 2010, 362, 12. 6 Hashi K, Ishikawa K, Matsuda T, et al. Journal of Alloys and Compounds, 2004, 368, 215. 7 Xiong L Y, Liu S, Wang L B, et al. Acta Metallurgica Sinica, 2008, 44(7), 781(in Chinese). 熊良银, 刘实, 王隆保,等. 金属学报, 2008, 44(7), 781. 8 Xiong L Y, Liu S, Rong L J. International Journal of Hydrogen Energy, 2010, 35, 1643. 9 Zhu K J, Li X Z, Zhu Z F, et al. Journal of Membrane Science, 2019, 584, 290. 10 Ishikawa K, Watanabe S, Aoki K. Journal of Alloys and Compounds, 2013, 566, 68. 11 Min R N, Yan E H, Huang H R, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(12), 2457(in Chinese). 闵若男,闫二虎,黄浩然,等.中国有色金属学报,2018,28(12),2457. 12 Yan E H, Huang H R, Sun S H, et al. Journal of Membrane Science, 2018, 565, 411. 13 Li X Z, Liu D M, Liang X, et al. Journal of Membrane Science, 2016, 514, 294. 14 Yan E H, Li X Z, Tang P, et al. Acta Metallurgica Sinica,2014,50(1),71(in Chinese). 闫二虎, 李新中, 唐平,等. 金属学报, 2014, 50(1), 71. 15 Hashi K, Ishikawa K, Matsuda T, et al. Journal of Alloys and Compounds, 2005, 404, 273. 16 Yan E H, Min R N, Zhao P, et al. Journal of Membrane Science, 2020, 595, 117531. 17 Yan E H, Li X Z, Liu D M, et al. International Journal of Hydrogen Energy, 2014, 39, 8385. 18 Yan E H, Sun L X, Xu F, et al. International Journal of Hydrogen Energy, 2016, 41, 1401. 19 Yan E H,Huang H R,Min R N, et al. International Journal of Hydrogen Energy, 2018, 43, 14466. 20 Yang J Y, Nishimura C, Komaki M. Journal of Membrane Science, 2006, 282, 337. 21 Xiao H T, Shi F, Song X P, et al. Rare Metal Materials and Enginee-ring, 2012, 41(6), 1124(in Chinese). 肖海亭,石锋,宋西平,等.稀有金属材料与工程,2012,41(6),1124. 22 Mcbreen J, Nanis L, Beck W. Journal of the Electrochemical Society. 1966, 113, 1218. 23 Pati S, Jat R A, Anand N S, et al. Journal of Membrane Science, 2017, 522, 151. 24 Alimov V N, Busnyuk A O, Notkin M E, et al. Journal of Membrane Science, 2015, 481, 54.