Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21060218-6    https://doi.org/10.11896/cldb.21060218
  金属与金属基复合材料 |
Nb-Ti-Fe渗氢合金成分优化设计和氢传输性能研究
葛晓宇1, 闫二虎1,2,*, 陈运灿1, 黄仁君1, 程健1, 王豪1, 刘威1, 褚海亮1, 邹勇进1, 徐芬1, 孙立贤1,*
1 桂林电子科技大学广西信息材料重点实验室,广西 桂林 541004
2 中南大学粉末冶金国家重点实验室,长沙 410083
Composition Optimization Design and Hydrogen Transport Property of Nb-Ti-Fe Hydrogen Permeation Alloys
GE Xiaoyu1, YAN Erhu1,2,*, CHEN Yuncan1, HUANG Renjun1, CHENG Jian1, WANG Hao1, LIU Wei1, CHU Hailiang1, ZOU Yongjin1, XU Fen1, SUN Lixian1,*
1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 4396KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,围绕ⅤB族金属(Nb、V和Ta)及其合金开发廉价和高渗氢性能的合金膜材料成为研究的热点。基于此,本工作围绕Nb-Ti-Fe渗氢合金体系,即Nb10Ti50+xFe40-x和Nb15Ti45+xFe40-x(x=0,5,10)合金,开展了一系列研究。首先通过SEM、EDS和XRD等对其显微结构特征进行了表征;在此基础上,利用氢渗透测试仪和Devanathan-Stachurski型电解池测量上述合金的氢传输性能,如氢渗透、氢扩散和氢溶解性能;最后阐明了合金成分、组织、氢传输性能之间的本征关系。研究结果表明,六种Nb-Ti-Fe三元合金均具有双相结构特征,即由TiFe相和α-Nb相组成,尽管个别成分中含有少量的NbFe相。此外,上述合金中,随着Ti/Fe比率的升高(即x值↑),共晶相体积分数增大,相反,初生TiFe相含量减少,伴随上述变化,合金的氢渗透性能变好,但抗氢脆性能变差,上述结果进一步证实了组织中的初生TiFe相和共晶相起抗氢脆作用,而α-Nb固溶体相起渗氢作用。Nb10Ti55Fe35合金在673 K下具有最优的渗氢性能,即:其氢渗透系数为3.28×10-8 mol H2 m-1·s-1·Pa-1/2,是相同实验条件下纯Pd的2.1倍。上述结果还远高于文献报道中的Nb12Ti52Fe36 (2.9×10-8 mol H2 m-1·s-1·Pa-1/2)。本工作证实了成分优化设计可以很好地调控合金的显微组织结构,进而获取综合性能良好的Nb-Ti-Fe渗氢合金。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
葛晓宇
闫二虎
陈运灿
黄仁君
程健
王豪
刘威
褚海亮
邹勇进
徐芬
孙立贤
关键词:  Nb-Ti-Fe合金  显微组织  氢渗透性能  氢扩散性能    
Abstract: Currently, the development of alloy membrane materials with cheap and excellent hydrogen permeability around ⅤB group metals (Nb, V and Ta) and their alloys has become a hot research topic. Hence, the Nb-Ti-Fe hydrogen permeation alloy system was studied in detail in this work, especially Nb10Ti50+xFe40-x and Nb15Ti45+xFe40-x(x=0, 5, 10) alloys. Firstly, the microstructure characteristics were analyzed by SEM, EDS and XRD. Based on this, the hydrogen transport property of these alloys, such as hydrogen permeability, hydrogen diffusivity and hydrogen solubility, were measured using the hydrogen permeability tester and the Devanathan-Stachurski electrolytic cell. Finally, the intrinsic relationship among alloy composition, microstructure and hydrogen transport property was clarified. The results show that the six Nb-Ti-Fe ternary alloys all exhibit the characteristics of dual-phase structure, consisting of TiFe phase and α-Nb phase, although the individual component contains a small amount of NbFe phase. Furthermore, as the Ti/Fe ratio increases (i.e., x value↑), the volume fraction of the eutectic phase increases. On the contrary, the content of the primary TiFe phase decreases. With the above changes, the hydrogen permeability gradually increases, but the hydrogen embrittlement resistance becomes poor. The above results further confirm that the primary TiFe phase and the eutectic phase in the microstructure play the role of hydrogen embrittlement resistance, while the α-Nb phase mainly contributes to hydrogen permeability. The Nb10Ti55-Fe35 alloy exhibits the optimal hydrogen permeability at 673 K, i.e., its hydrogen permeability coefficient is 3.28×10-8 mol H2 m-1·s-1·Pa-1/2, which is 2.1 times than that of pure Pd, and also far better than that of the Nb12Ti52Fe36 (2.9×10-8 mol H2 m-1·s-1·Pa-1/2) reported in the literature. This work proves that the microstructure of alloys can be adjusted through the composition optimization design, so as to obtain Nb-Ti-Fe hydrogen permeation alloy with good comprehensive properties.
Key words:  Nb-Ti-Fe alloys    microstructure    hydrogen permeability    hydrogen diffusion property
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG139  
基金资助: 国家自然科学基金(52161034;51761009;U20A20237;51863005;51462006;51102230;52101245;51871065;51971068);广西自然科学基金(2020GXNSFAA159163;2021GXNSFBA075057);广西八桂学者基金、中德国际合作项目(GZ1528);广西科技项目(AA19182014, AD17195073, AA17202030-1, AB21220027);桂林电子科技大学研究生教育创新计划项目(2019YCXS109);广西信息材料重点实验室基金项目(211012-Z)
通讯作者:  *yeh@guet.edu.cn; sunlx@guet.edu.cn   
作者简介:  葛晓宇,2020年6月毕业于西南科技大学,获得工学学士学位。现为桂林电子科技大学材料科学与工程学院硕士研究生,在闫二虎教授的指导下进行研究,目前主要研究领域为新型渗氢合金材料。孙立贤,桂林电子科技大学教授、博士研究生导师,俄罗斯自然科学院外籍院士,中科院优秀百人计划,广西优秀八桂学者,英国皇家化学会会士。1994年获湖南大学理学博士学位(师从俞汝勤院士);1995.2—1995.4 日本产业技术综合研究所客座研究员 (STA),1995.5—1996.10获洪堡基金(AvH)资助在德国耶拿大学无机分析化学研究所进行合作研究;1996.10—2002.9 任日本工业技术院特别研究员(AIST)/产业技术研究员(NEDO)。在Energy & Environmental Science、Journal of Materials Chemistry A、Biosensors & Bioelectronics、Crystal Growth & Design、Journal of Physical Chemistry C、Dalton Transactions、International Journal of Hydrogen Energy等国内外重要学术刊物发表学术论文330余篇(其中SCI、EI收录300余篇)。闫二虎,桂林电子科技大学教授、硕士研究生导师。2009年7月本科毕业于河北科技大学,2011年7月和2014年7月在哈尔滨工业大学分别取得工学硕士学位和工学博士学位,毕业后在桂林电子科技大学工作。2018年11月至2019年11月获广西高校优秀教师出国留学深造项目资助赴加拿大国家科学研究院信息-能源材料研究所进行为期一年的访学研究工作。主要从事合金定向凝固理论和新型能源材料方面的研究,主要包含相图热力学计算、多相合金凝固行为和新型渗氢/储氢性能的研究。近五年来在Journal of Membrane Science、Journal of Alloys and Compounds、International Journal of Hydrogen Energy、Journal of Crystal Growth、International Journal of Materials Research、《金属学报》等刊物上发表SCI文章 60余篇,申请专利10余项。
引用本文:    
葛晓宇, 闫二虎, 陈运灿, 黄仁君, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe渗氢合金成分优化设计和氢传输性能研究[J]. 材料导报, 2022, 36(18): 21060218-6.
GE Xiaoyu, YAN Erhu, CHEN Yuncan, HUANG Renjun, CHENG Jian, WANG Hao, LIU Wei, CHU Hailiang, ZOU Yongjin, XU Fen, SUN Lixian. Composition Optimization Design and Hydrogen Transport Property of Nb-Ti-Fe Hydrogen Permeation Alloys. Materials Reports, 2022, 36(18): 21060218-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060218  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21060218
1 Hydrogen Association. Hydrogen technology, Science Press, China, 2009, pp.1(in Chinese).
氢能协会. 氢能技术, 科学出版社, 2009,pp.1.
2 Sun Y, Su W, Zhou L. Hydrogen fuel, Chemical Industry Press, China, 2005, pp.1(in Chinese).
孙艳, 苏伟, 周理.氢燃料, 化学工业出版社, 2005, pp.1.
3 Liu Z W, Wang Z M, Liu F, et al. Rare Metal Materials and Enginee-ring, 2011, 40(6), 1033(in Chinese).
刘战伟,王仲民,刘菲,等.稀有金属材料与工程,2011,40(6),1033.
4 Ishikawa K, Seki Y, Kita K, et al. International Journal of Hydrogen Energy, 2011, 36, 1784.
5 Dolan M D. Journal of Membrane Science, 2010, 362, 12.
6 Hashi K, Ishikawa K, Matsuda T, et al. Journal of Alloys and Compounds, 2004, 368, 215.
7 Xiong L Y, Liu S, Wang L B, et al. Acta Metallurgica Sinica, 2008, 44(7), 781(in Chinese).
熊良银, 刘实, 王隆保,等. 金属学报, 2008, 44(7), 781.
8 Xiong L Y, Liu S, Rong L J. International Journal of Hydrogen Energy, 2010, 35, 1643.
9 Zhu K J, Li X Z, Zhu Z F, et al. Journal of Membrane Science, 2019, 584, 290.
10 Ishikawa K, Watanabe S, Aoki K. Journal of Alloys and Compounds, 2013, 566, 68.
11 Min R N, Yan E H, Huang H R, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(12), 2457(in Chinese).
闵若男,闫二虎,黄浩然,等.中国有色金属学报,2018,28(12),2457.
12 Yan E H, Huang H R, Sun S H, et al. Journal of Membrane Science, 2018, 565, 411.
13 Li X Z, Liu D M, Liang X, et al. Journal of Membrane Science, 2016, 514, 294.
14 Yan E H, Li X Z, Tang P, et al. Acta Metallurgica Sinica,2014,50(1),71(in Chinese).
闫二虎, 李新中, 唐平,等. 金属学报, 2014, 50(1), 71.
15 Hashi K, Ishikawa K, Matsuda T, et al. Journal of Alloys and Compounds, 2005, 404, 273.
16 Yan E H, Min R N, Zhao P, et al. Journal of Membrane Science, 2020, 595, 117531.
17 Yan E H, Li X Z, Liu D M, et al. International Journal of Hydrogen Energy, 2014, 39, 8385.
18 Yan E H, Sun L X, Xu F, et al. International Journal of Hydrogen Energy, 2016, 41, 1401.
19 Yan E H,Huang H R,Min R N, et al. International Journal of Hydrogen Energy, 2018, 43, 14466.
20 Yang J Y, Nishimura C, Komaki M. Journal of Membrane Science, 2006, 282, 337.
21 Xiao H T, Shi F, Song X P, et al. Rare Metal Materials and Enginee-ring, 2012, 41(6), 1124(in Chinese).
肖海亭,石锋,宋西平,等.稀有金属材料与工程,2012,41(6),1124.
22 Mcbreen J, Nanis L, Beck W. Journal of the Electrochemical Society. 1966, 113, 1218.
23 Pati S, Jat R A, Anand N S, et al. Journal of Membrane Science, 2017, 522, 151.
24 Alimov V N, Busnyuk A O, Notkin M E, et al. Journal of Membrane Science, 2015, 481, 54.
[1] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[2] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[3] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[4] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[5] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[6] 李萧, 胡水平, 蔡钰. 固溶温度对碳烯/6061铝基复合材料轧制薄板组织与力学性能的影响[J]. 材料导报, 2022, 36(18): 21010123-6.
[7] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[8] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[9] 胡勇, 刘飞, 刘员员, 赵龙志, 焦海涛, 唐延川, 刘德佳. AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的组织和耐腐蚀性研究[J]. 材料导报, 2022, 36(14): 22010093-6.
[10] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[11] 李芳, 李才巨, 彭巨擘, 易健宏, 高鹏, 张家涛, 关洪达, 关一凡. 锡锌系无铅钎料合金化研究进展[J]. 材料导报, 2022, 36(13): 20010038-10.
[12] 王权, 吴长军, 徐雪薇, 彭浩平, 刘亚, 苏旭平. 退火处理对CoxCrFeMnNi2-x高熵合金显微组织和耐蚀性的影响[J]. 材料导报, 2022, 36(11): 21110150-7.
[13] 宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
[14] 赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
[15] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed