Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21080246-8    https://doi.org/10.11896/cldb.21080246
  无机非金属及其复合材料 |
基于STC-SMA层间性能的沥青混合料设计与评估
李嘉1,2,*, 秦时髦1, 张恒龙1
1 湖南大学土木工程学院,长沙 410000
2 风工程与桥梁工程湖南省重点实验室,长沙 410000
Design and Evaluation of Asphalt Mixture Based on STC-SMA Interlayer Performances
LI Jia1,2,*, QIN Shimao1, ZHANG Henglong1
1 School of Civil Engineering, Hunan University, Changsha 410000, China
2 Key Laboratory for Wind and Bridge Engineering of Hunan Province, Changsha 410000, China
下载:  全 文 ( PDF ) ( 28630KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究高韧性混凝土组合桥面沥青面层对层间黏结性能的影响,开展超高韧性混凝土(STC)-沥青玛蹄脂碎石混合料(SMA)复合试件斜剪试验和拉伸试验,探究矿料级配、胶结料类型和环境温度等因素对层间力学性能的影响规律;经过多次冻融循环,评估水损害对层间黏结性能的劣化影响。结果表明,合理的混合料级配能提高STC-SMA黏结性能,SMA-13A级配层间黏结性能最佳;高弹高黏沥青胶结料有利于增强STC-SMA黏结性能,常温25 ℃和高温60 ℃条件下,相比SBS-SMA-13A,PG100-SMA-13A复合试件的层间剪切强度分别增加33.7%、55.9%,剪切断裂能分别增加41.2%和27.4%;层间拉伸强度分别增加15.5%、23.1%,拉伸断裂能分别增加27.0%、17.0%;环境温度对层间性能有显著影响,与常温相比,高温下STC-PG100-SMA-13A复合试件的层间剪切强度、拉伸强度的降幅分别为64.2%、77.5%。经过12次冻融循环后,PG100-SMA-13A复合试件的剪切强度、拉伸强度分别为1.75 MPa、1.00 MPa。PG100-SMA-13A无论是层间力学性能还是水稳定性均表现良好,因此,推荐采用PG100-SMA-13A作为高韧性混凝土组合桥面磨耗层,并建议将高温稳定性列于设计控制指标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李嘉
秦时髦
张恒龙
关键词:  高韧性混凝土  组合桥面  层间性能  剪切试验  拉伸试验    
Abstract: In order to study the influence of asphalt surface layer on the interlayer bonding performances of super toughness concrete composite bridge deck, the oblique shear and tensile test of super toughness concrete (STC) -stone matrix asphalt (SMA) composite specimens were carried out. The influences of mineral aggregate gradation, binder type and ambient temperature on the mechanical properties of the interlayer were explored. After several freeze-thaw cycles, the deterioration effect of water damage on interlayer bonding performance was evaluated. The results show that reasonable mixture gradation can improve the bonding performances of STC-SMA, and SMA-13A is of the best performances. High elastic-high viscosity asphalt binder is conducive to enhancing the bonding performance of STC-SMA. Under 25 ℃ and 60 ℃, the interlaminar shear strength of PG100-SMA-13A was 33.7% and 55.9% higher, and the shear fracture energy was 41.2% and 27.4% higher than that of SBS-SMA-13A, respectively. The interlaminar tensile strength increased by 15.5% and 23.1%, and the tensile fracture energy increased by 27.0% and 17.0%, respectively. The ambient temperature had a significant influence on the interlayer performances. Contrasting with room temperature, the interlaminar shear strength and tensile strength of STC-PG100-SMA-13A decreased by 64.2% and 77.5% at high temperature, respectively. After 12 freeze-thaw cycles, the shear strength and tensile strength of PG100-SMA-13A composite specimens were 1.75 MPa and 1.00 MPa, respectively. PG100-SMA-13A is of good interlaminar performances and water stability. Therefore, PG100-SMA-13A is recommended as the wearing layer of STC, and the high temperature stability is suggested to be included in the design control index.
Key words:  super toughness concrete    composite deck    interlaminar performance    shear test    tensile test
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  U443.33  
基金资助: 国家自然科学基金(52038003)
通讯作者:  *李嘉,湖南大学土木工程学院教授、硕士研究生导师。1982年湖南大学土木系道桥专业本科毕业,1985年湖南大学土木系道桥专业硕士毕业后留校工作至今。长期致力于铺面新材料、新技术研究,绿色低碳交通体系研究。发表论文60余篇,授权专利7项。ijia@hnu.edu.cn   
引用本文:    
李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
LI Jia, QIN Shimao, ZHANG Henglong. Design and Evaluation of Asphalt Mixture Based on STC-SMA Interlayer Performances. Materials Reports, 2023, 37(5): 21080246-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080246  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21080246
1 Shao X D, Yi D T, Huang Z Y, et al. Journal of Bridge Engineering, 2013, 18(5), 417.
2 Li J, Feng X T, Shao X D, et al. China Journal of Highway and Transport, 2014, 27(3), 39 (in Chinese).
李嘉, 冯啸天, 邵旭东, 等. 中国公路学报, 2014, 27(3), 39.
3 Zhang Q H, Bu Y Z, Li Q. China Journal of Highway and Transport, 2017, 30(3), 14 (in Chinese).
张清华, 卜一之, 李乔. 中国公路学报, 2017, 30(3), 14.
4 Li S, Liu C H, Li Y Z, et al. China Civil Engineering Journal, 2013, 46(7), 151 (in Chinese).
李盛, 刘朝晖, 李宇峙, 等. 土木工程学报, 2013, 46(7), 151.
5 Cao M M, Huang W Q, Lu Y, et al. Journal of Highway and Transportation Research and Development (English Edition), 2018, 12(4), 33.
6 Li S, Huang Y, Liu Z H. Construction and Building Materials, 2016, 102, 699.
7 Wan C G, Shen A Q, Xue C Z, et al. Journal of Hunan University(Na-tural Sciences), 2016, 43(9), 113 (in Chinese).
万晨光, 申爱琴, 薛翠真, 等. 湖南大学学报(自然科学版), 2016, 43(9), 113.
8 Qian G P, Li S J, Yu H N, et al. Materials (Basel, Switzerland), 2019, 12(9), 1.
9 Liu Y, Yao B, Yu C Q, et al. International Journal of Adhesion and Adhesives, 2018, 84, 360.
10 Huang Y, Liu Z H, Li S, et al. Journal of Highway and Transportation Research and Development, 2015, 32(6), 32 (in Chinese).
黄优, 刘朝晖, 李盛, 等. 公路交通科技, 2015, 32(6), 32.
11 Zhang K, Luo Y F. Journal of Materials in Civil Engineering, 2018, 30(8), 04018161.
12 Raposeiras A C, Castro-Fresno D, Vega-Zamanillo A, et al. Construction and Building Materials, 2013, 43, 372.
13 Raab C, Abd El Halim A O, Partl M N. Construction and Building Materials, 2012, 26(1), 190.
14 Luo Y F, Zhang K, Li P L, et al. Construction and Building Materials, 2019, 225, 214.
15 Ren R B, Geng L B, Wang L Z, et al. Journal of Building Materials, 2016, 19(4), 762 (in Chinese).
任瑞波, 耿立涛, 王立志, 等. 建筑材料学报, 2016, 19(4), 762.
16 China Highway and Transportation Society. Technical guideline for super toughness concrete(STC)composite deck structure, China Communications Press, China, 2021(in Chinese).
中国公路学会. 高韧性混凝土组合桥面结构技术指南, 人民交通出版社, 2021.
17 Ministry of Transport of the People's Republic of China. Field test met-hods of highway subgrade and pavement, China Communications Press, China, 2019, pp. 63(in Chinese).
中华人民共和国交通运输部. 公路工程路基路面现场测试规程, 人民交通出版社, 2019, pp. 63.
18 Li J, Zhang J, Dong L, et al. China Civil Engineering Journal, 2021, 54(7), 73 (in Chinese).
李嘉, 张坚, 董亮, 等. 土木工程学报, 2021, 54(7), 73.
19 Cai J, Wen Y, Wang D, et al. Construction and Building Materials, 2020, 261, 1.
[1] 宋晓毓, 王德志, 吴壮志, 段柏华, 毕海莲, 刘新利. 爆炸焊接Nb/Q345R层状复合材料的热震性能研究[J]. 材料导报, 2021, 35(18): 18131-18135.
[2] 曹忠亮, 郭登科, 林国军, 韩振宇, 富宏亚. 热塑性纤维铺放构件的层间剪切强度及孔隙率[J]. 材料导报, 2021, 35(18): 18205-18209.
[3] 余坤, 文立伟, 宦华松. 缝合复合材料T型加筋壁板的抗剪与抗弯性能[J]. 材料导报, 2021, 35(16): 16190-16194.
[4] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[5] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed