Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21080186-7    https://doi.org/10.11896/cldb.21080186
  无机非金属及其复合材料 |
多孔介质湿物理性质预测方法综述
黄先奇1,2, 李小龙1,2, 冯驰1,2,*
1 重庆大学建筑城规学院,重庆 400045
2 重庆大学山地城镇建设与新技术教育部重点实验室,重庆 400045
Review of Prediction Methods for the Hygric Properties of Porous Media
HUANG Xianqi1,2, LI Xiaolong1,2, FENG Chi1,2,*
1 School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China
2 Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
下载:  全 文 ( PDF ) ( 4628KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔建筑材料的湿物理性质是分析建筑围护结构热湿传递的重要基本参数。自20世纪80年代开始,欧美发达国家已针对常见建筑材料的湿物理性质开展多个大型测试项目,建立了涵盖上百种多孔建筑材料湿物理性质的基础数据库。我国学者从20世纪60年代开始研究多孔建筑材料的湿物理性质,至今已有一定积累,但在湿物理性质研究的广度和深度上尚需进一步探索;近年来,我国许多学者积极开展多孔建筑材料湿物理性质的研究工作,并取得明显进展。由于原材料及工艺等方面的差别,国际上的湿物理性质数据库在我国并非完全适用。因此,针对我国常见建筑材料,需要建立自主、完备、可靠的数据库。为获得材料的湿物理性质,最常用的是实验测试方法,但部分测试方法存在耗时长、操作复杂、仪器昂贵等问题。例如,等温吸放湿曲线可能需要数月甚至数年才能完成测试,压力平板实验操作流程复杂且对压力控制精度要求较高,而用于液态水扩散系数测试的X射线仪或核磁共振仪等设备价格较高,不利于常规实验室普及。多孔建筑材料与土壤、纤维、岩石、食品等都属于多孔介质,并且湿分的储存和传递性质都是其研究的关键参数。例如,保水曲线是研究旱地土壤的必要指标,湿扩散系数是评价织物热舒适度的重要参数,湿渗透系数影响石油的开采效率,等温吸放湿曲线决定食物的保鲜时长。为快速、准确获得土壤、纤维、岩石、食品等多孔介质的湿物理性质,学者们开展了大量运用已知物理性质预测未知湿物理性质的方法研究。本文总结了多孔介质湿物理性质的预测方法,归纳其优缺点,探讨将其运用于多孔建筑材料上的可能性,以期预测方法能与测试方法互为补充,为高效获得多孔建筑材料的湿物理性质提供帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄先奇
李小龙
冯驰
关键词:  多孔介质  湿物理性质  建筑材料  预测方法    
Abstract: The hygric properties of porous building materials are indispensable in the analysis of heat and moisture transfer in building envelopes. Since the 1980s, European and American countries have carried out a number of large-scale test projects for the hygric properties of typical buil-ding materials. These projects established basic databases covering hundreds of building materials' hygric properties. Chinese scholars began to study the hygric properties of porous building materials in the 1960s, but further exploration is still needed. In recent years, the research of buil-ding materials' hygric properties has been actively carried out by Chinese scholars and noticeable progress has been made. Due to the differences in raw materials and manufacturing processes, the international databases are not fully applicable in China. Therefore, it is necessary to establish an independent, complete and reliable database for typical building materials in China. In order to obtain the hygric properties, the most commonly used method is through experiments. Some test methods, however, are time and energy consuming. For example, it may take months or even years to complete the measurement on sorption isotherms. The operation process of pressure plate test is complex and requires high accuracy in pressure control. Meanwhile, the X-ray or nuclear magnetic resonance instrument used to test the liquid diffusivity is expensive and not suitable for laboratory popularization. Similar to most building materials, soil, fiber, rock and food are all porous media, and their hygric properties are the key parameters to study the storage and transfer of moisture. For example, the water retention curve is a necessary index for studying dryland soil; diffusivity is an important parameter for evaluating the thermal comfort of fabrics; permeability affects the efficiency of oil extraction; and sorption isotherms determine the preservation time of food. In order to quickly and accurately obtain their hygric properties, scholars have carried out a lot of research on the method of using known physical properties to predict the unknown hygric properties of soil, fiber, rock and food. This paper reviews the prediction methods for the hygric properties of such porous media, summarizes their pros and cons, and discusses their application possibility on porous building materials. The target is to combine experiments with prediction methods, in order to effectively obtain the hygric properties of porous building materials.
Key words:  porous media    hygric property    building material    prediction method
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TU111  
基金资助: 国家自然科学基金(52178065)
通讯作者:  *冯驰,重庆大学“百人计划”研究员、博士研究生导师。2014年博士毕业于华南理工大学建筑技术科学专业。现为ISO/TC 205 “building environment design” JWG11 技术委员会成员、中国建筑学会建筑物理分会理事。在国内外著名期刊、会议上发表论文60余篇,研究方向为建筑材料热湿性能测试与优化、建筑围护结构传热与传质。fengchi860602@outlook.com   
作者简介:  黄先奇,2020年6月毕业于苏州科技大学,获得工学学士学位。现为重庆大学大学建筑城规学院硕士研究生。目前主要研究领域为多孔建筑材料的热湿性能。
引用本文:    
黄先奇, 李小龙, 冯驰. 多孔介质湿物理性质预测方法综述[J]. 材料导报, 2023, 37(5): 21080186-7.
HUANG Xianqi, LI Xiaolong, FENG Chi. Review of Prediction Methods for the Hygric Properties of Porous Media. Materials Reports, 2023, 37(5): 21080186-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080186  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21080186
1 Feng C. Study on the test methods for the hygric properties of porous building materials. Ph. D. Thesis, South China University of Technology, China, 2014 (in Chinese).
冯驰. 多孔建筑材料湿物理性质的测试方法研究. 博士学位论文, 华南理工大学, 2014.
2 Brunauer S, Deming L S, Deming W E, et al. Journal of the American Chemical Society, 1940, 62(7), 1723.
3 Hens H. IEA Annex 14: Condensation and energy, Volume 3: Catalogue of material properties, International Energy Agency, America, 1991.
4 Kumaran M K. IEA Annex 24: Heat, air and moisture transfer in insulated envelope parts. Final Report, Volume 3, Task 3: Material Properties, International Energy Agency, America, 1996.
5 Kumaran M K. A thermal and moisture transport property database for common building and insulating materials, final report from ASHRAE research project 1018-RP, The National Research Council, Canada, 2002.
6 Beaulieu P, Bomberg M T, Cornick S M, et al. NRC publications archive, final report from MEWS project, The National Research Council, Canada, 2002.
7 International Organization for Standardization. ISO 12570:2000(E) Hygrothermal performance of building materials and products-determination of moisture content by drying at elevated temperature, Switzerland, 2000.
8 ASTM International. ASTM C1699-09(2015) Standard test method for moisture retention curves of porous building materials using pressure plates, America, 2015.
9 ASTM International. ASTM E96/E96M-22 Standard test method for water vapor transmission of materials, America, 2022.
10 International Organization for Standardization. ISO 12572:2016(E) Hygrothermal performance of building materials and products-determination of water vapour transmission properties, Switzerland, 2016.
11 International Organization for Standardization. ISO 10545:2018(E) Ceramic tiles-determination of water absorption, apparent porosity, apparent relative density and bulk density, Switzerland, 2018.
12 International Organization for Standardization. ISO 12571:2013(E) Hygrothermal performance of building materials and products-determination of hygroscopic sorption properties, Switzerland, 2013.
13 Huang F Q. Study of the moisture conductivity of building materials using radioisotopes, Institute of Scientific and Technical Information of China, China, 1965 (in Chinese).
黄福其. 利用放射性同位素研究建筑材料的湿传导系数, 中国科学技术情报研究所, 1965.
14 Wang B X, Fang Z H. Journal of Engineering Thermophysics, 1985, 6(1), 60 (in Chinese).
王补宣, 方肇洪. 工程热物理学报, 1985, 6(1), 60.
15 Wang B X, Yu W P. Journal of Engineering Thermophysics, 1987, 8(4), 363 (in Chinese).
王补宣, 虞维平. 工程热物理学报, 1987, 8(4), 363.
16 Han J T, Shi M H, Yu W P, et al. Acta Metrologica Sinica, 1995, 16(2), 153 (in Chinese).
韩吉田, 施明恒, 虞维平, 等. 计量学报, 1995, 16(2), 153.
17 Pei Q Q, Chen Z K. Journal of Hunan University(Natural Sciences), 1999, 26(4), 96 (in Chinese).
裴清清, 陈在康. 湖南大学学报:自然科学版, 1999, 26(4), 96.
18 Li K S, Zhang X, Han X, et al. Journal of Building Materials, 2009, 12(3), 288 (in Chinese).
李魁山, 张旭, 韩星, 等. 建筑材料学报, 2009, 12(3), 288.
19 Sun L X, Feng C, Li Y J, et al. Building Science, 2020, 36(12), 83 (in Chinese).
孙立新, 冯驰, 李艳娟, 等. 建筑科学, 2020, 36(12), 83.
20 Feng C, Yu X, Wang D L. Journal of Civil Architectural and Environmental Engineering. 2016, 38(2), 125 (in Chinese).
冯驰, 俞溪, 王德玲. 土木建筑与环境工程, 2016, 38(2), 125.
21 Zhang C Q, Tang M F, Feng C. Building Science, 2021, 37(4), 60 (in Chinese).
张传群, 唐鸣放, 冯驰. 建筑科学, 2021, 37(4), 60.
22 Lei Y, Yang H Y, Zhang Y, et al. Building Science, 2021, 37(2), 165 (in Chinese).
雷玥, 杨寒羽, 张宇, 等. 建筑科学, 2021, 37(2), 165.
23 Su Y, Zhu J, Wang P, et al. Chinese Agricultural Science Bulletin, 2013, 29(14), 140 (in Chinese).
苏杨, 朱健, 王平, 等. 中国农学通报, 2013, 29(14), 140.
24 Zhu W W. The research of microclimate state under clothing and the measurement of moisture resistance for fabric. Master's Thesis, Donghua University, China, 2014 (in Chinese).
朱维维. 衣下微气候状态分析及织物湿阻的测量. 硕士学位论文, 东华大学, 2014.
25 Wang W, Qian J Z, Ma L, et al. Hydrogeology & Engineering Geology, 2021, 48(3), 82 (in Chinese).
王玮, 钱家忠, 马雷, 等. 水文地质工程地质, 2021, 48(3), 82.
26 Lian W W, Zhang J, Li M F, et all. Chinese Journal of Tropical Crops, 2013, 34(12), 2424 (in Chinese).
连文伟, 张劲, 李明福, 等. 热带作物学报, 2013, 34(12), 2424.
27 De Burgh J M, Foster S J, Valipour H R. Cement and Concrete Research, 2016, 81, 134.
28 Song W F, Tian M W, Yu W D. The Journal of the Textile Institute, 2012, 103(8), 827.
29 Song Y, Dai G, Zhao L, et al. Construction and Building Materials, 2020, 247, 118527.
30 Nivedya M K, Mallick R B. International Journal of Pavement Engineering, 2020, 21(9), 1057.
31 KoíčJ,Žumár J, Pavlík Z, et al. Journal of Building Physics, 2011, 35(3), 238.
32 Khlosi M, Alhamdoosh M, Douaik A, et al. European Journal of Soil Science, 2016, 67(3), 276.
33 Gunarathna M H J P, Sakai K, Nakandakari T, et al. Water, 2019, 11(9), 1940.
34 Kohler R, Alex R, Brielmann R, et al. Macromolecular Symposia, 2006, 244(1), 89.
35 Mazaheripour H, Faria R, Azenha M, et al. Advances in Cement Research, 2020, 33(6), 257.
36 Aubertin M, Mbonimpa M, Bussière B, et al. Canadian Geotechnical Journal, 2003, 40(6), 1104.
37 Abdou Ibro M, Verdier J, Geoffroy S, et al. Cement and Concrete Research, 2021, 142, 106310.
38 Zhang Z, Scherer G. Construction and Building Materials, 2018, 191, 193.
39 Sánchez-Fajardo V M, Torres M E, Moreno A J. Construction and Building Materials, 2014, 53, 225.
40 Huang G, Zhang R. Geoderma, 2005, 127(1-2), 52.
41 Pia G, Sanna U. International Journal of Engineering Science, 2014, 75, 31.
42 He G, Zhao Z, Ming P, et al. Journal of Power Sources, 2007, 163(2), 846.
43 Behrang A, Kantzas A. Fuel, 2017, 188, 239.
44 Benavente D, Pla C, Cueto N, et al. Engineering Geology, 2015, 195, 301.
45 Perré P, Turner I. Holzforschung, 2001, 55(4), 417.
46 Shen Y, Xu P, Qiu S, et al. International Journal of Heat and Mass Transfer, 2020, 152, 119540.
47 Botula Y D, Van Ranst E, Cornelis W M. Revista Brasileira de Ciência do Solo, 2014, 38, 679.
48 Myhara R M, Sablani S S, Al-Alawi S M, et al. LWT-Food Science and Technology, 1998, 31(7), 699.
49 Peng G, Chen X, Wu W, et al. Journal of Food Engineering, 2007, 80(2), 562.
50 Janjai S, Intawee P, Tohsing K, et al. Computers and Electronics in Agriculture, 2009, 66(2), 209.
51 Koekkoek E J W, Booltink H. European Journal of Soil Science, 1999, 50(3), 489.
52 Najigivi A, Khaloo A, Iraji Zad A, et al. International Journal of Concrete Structures and Materials, 2013, 7(3), 225.
53 Wu J, Yin X, Xiao H. Science Bulletin, 2018, 63(18), 1215.
54 Yu B, Zhao H, Tian J, et al. Journal of Natural Gas Science and Engineering, 2021, 86, 103742.
55 Kočí J, Černý R. Advanced Materials Research, 2015, 1126, 75.
56 Zhu W, Chao Z, Ma G. Advances in Civil Engineering, 2020, 2020, 4718493.
57 Sun J, Zhang J, Gu Y, et al. Construction and Building Materials, 2019, 207, 440.
58 Nguyen P M, Haghverdi A, De Pue J, et al. Biosystems Engineering, 2017, 153, 12.
59 Achieng K O. Computers & Geosciences, 2019, 133, 104320.
60 Guio Blanco C M, Brito Gomez V M, Crespo P, et al. Geoderma, 2018, 316, 100.
61 Rastgou M, Bayat H, Mansoorizadeh M, et al. Computers and Electronics in Agriculture, 2020, 174, 105502.
62 Huang J, Duan T, Zhang Y, et al. Advances in Civil Engineering, 2020, 2020, 8863181.
63 Rastgou M, Bayat H, Mansoorizadeh M, et al. Soil and Tillage Research, 2021, 210, 104980.
64 De Pue J, Botula Y D, Nguyen P M, et al. Journal of Hydrology, 2020, 597, 125770.
65 Pohjankukka J, Nevalainen P, Pahikkala T, et al. In: Artificial Intelligence Applications and Innovations. AIAI 2014. IFIP Advances in Information and Communication Technology. Berlin, 2014, pp. 436.
66 Gao N. Development and evaluation of pedotransferfunctions for austrian soil. Master's Thesis, North China Electric Power University, China, 2017 (in Chinese).
高楠. 奥地利土壤转换函数的构建研究. 硕士学位论文, 华北电力大学, 2017.
67 Cortes C, Vapnik V. Machine Learning, 1995, 20(3), 273.
68 Liu W, Fan A W, Huang X M. Theory and application of heat and mass transfer in porous media, China Science Publishing & Media Lta, China, 2006 (in Chinese).
刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用, 科学出版社, 2006.
69 Wang L W, Tamainot-Telto Z, Metcalf S J, et al. Applied Thermal Engineering, 2010, 30(13), 1805.
70 Cai Z Y. Experimental study and numerical simulation on mechanism of heat and mass transfer in wet porous media. Master's Thesis, Shandong Jianzhu University, China, 2017 (in Chinese).
蔡正燕. 含湿多孔介质热湿传递机理实验研究及数值模拟分析. 硕士学位论文, 山东建筑大学, 2017.
71 Yang L, Zhang Y S, Zhang C X. Bulletin of the Chinese Ceramic Society, 2020, 39(12), 3775 (in Chinese).
杨林, 张云升, 张春晓. 硅酸盐通报, 2020, 39 (12), 3775.
72 Guo X G, Wang J, Shi Z Q, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(12), 3939 (in Chinese).
郭兴国, 王佳, 史子群, 等. 硅酸盐通报, 2018, 37(12), 3939.
73 Li Y J, Sun L X, Yang J F, et all. Journal of Building Energy Efficiency, 2020, 48(9), 71 (in Chinese).
李艳娟, 孙立新, 杨静芬, 等. 建筑节能, 2020, 48(9), 71.
74 Cooley L A, Prowell B D, Brown E R. Issues pertaining to the permeability characteristics of coarsegraded superpave mixes, National Center for Asphalt Technology, America, 2002.
[1] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[2] 刘明坤, 孙振华, 李少鹏, 王启宝, 王栋民, 李会泉. 工业副产铁矾渣资源化利用研究进展[J]. 材料导报, 2022, 36(16): 20100089-9.
[3] 于冬雪, 于化杰, 黎红兵, 梁爽. FRP建筑材料的结构性能及应用综述[J]. 材料导报, 2021, 35(z2): 660-66.
[4] 周川, 杨博, 杨光, 杨德瑞, 杨小兵. 防毒面具用Zr-MOFs吸附材料研究进展[J]. 材料导报, 2021, 35(5): 5140-5146.
[5] 冉德钦, 安斌, 李轶然, 惠冰, 李艳召, 宋光远, 宋海民. 基于多孔介质煤矸石路基汞元素的扩散规律研究[J]. 材料导报, 2020, 34(Z1): 255-257.
[6] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[7] 史公初, 廖亚龙, 张宇, 苏博文, 王伟. 铜冶炼渣制备建筑材料及功能材料的研究进展[J]. 材料导报, 2020, 34(13): 13044-13049.
[8] 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed