Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 22010270-7    https://doi.org/10.11896/cldb.22010270
  无机非金属及其复合材料 |
-10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究
谭益成1,2, 刘志超1,2,*, 王发洲1,2
1 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
2 武汉理工大学材料科学与工程学院,武汉 430070
Study on Carbonation Characteristics of γ-C2S with the Addition of MgCl2 at -10 ℃
TAN Yicheng1,2, LIU Zhichao1,2,*, WANG Fazhou1,2
1 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 16761KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 γ-C2S是一种高活性的碳化固结胶凝材料,在与CO2反应过程中对环境温度敏感性低,可用于制备负温建筑材料。本工作研究了-10 ℃条件下掺氯化镁溶液γ-C2S碳化养护过程中的温度变化和硬化体的碳化产物组成、强度与反应程度发展规律以及微观形貌。结果表明:未掺MgCl2的γ-C2S样品在-10 ℃碳化养护后强度发展缓慢,24 h后仅有10.83 MPa。掺入不同浓度MgCl2溶液后,碳化体早期与后期强度均提升明显,0.5 h和24 h抗压强度最高可分别增至22.14 MPa和178.56 MPa。γ-C2S在-10 ℃下碳化产物以方解石为主,并含有少量文石,掺氯化镁溶液后由于Mg2+对Ca2+的取代形成部分镁方解石。MgCl2一方面通过降低溶液冰点使体系内在-10 ℃下仍存在液态水,为碳化过程提供反应环境,另一方面能促进Ca2+溶出和碳化反应的进程。两者的协同效应保证γ-C2S在-10 ℃条件下碳化养护仍能表现出优异的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭益成
刘志超
王发洲
关键词:  γ-C2S  负温建筑材料  碳化养护  MgCl2  抗压强度    
Abstract: γ-C2S is a highly reactive carbonatable binder and its carbonation reaction exhibits low susceptibility to environmental temperature, thus hol-ding great promises in the preparation of construction materials for sub-freezing temperatures. This work studies the carbonation characteristics of γ-C2S cured at -10 ℃ of different MgCl2 concentrations, including temperature change during carbonation curing, phase assemblage, compressive strength and degree of carbonation (DOC) evolution and microstructure after carbonation curing for different durations. Results indicated γ-C2S showed a very slow compressive strength development at -10 ℃, only 10.83 MPa after 24 h. The presence of MgCl2 significantly enhanced the early-age and later-age compressive strength with the maximum compressive strength being 22.14 MPa and 178.56 MPa after 0.5 h and 24 h, respectively. Carbonation products of γ-C2S cured at -10 ℃ consisted of calcite as the dominant polymorph of calcium carbo-nate and a trace amount of aragonite as well. The addition of MgCl2 led to the formation of Mg-calcite as a result of the substitution of Ca2+ by Mg2+. When MgCl2 was added to γ-C2S, the freezing point of the pore solution is lowered to such an extent that unfrozen liquid exists at -10 ℃, which provided the environment for carbonation reaction. Meanwhile, the presence of MgCl2 promotes the dissolution of Ca2+ and thus the carbonation reactivity. This synergistic effect accounts for the excellent mechanical performance of γ-C2S cured at -10 ℃.
Key words:  γ-C2S    negative temperature building material    carbonation curing    MgCl2    compressive strength
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U2001227)
通讯作者:  * 刘志超,武汉理工大学材料科学与工程学院教授、博士研究生导师。2006年武汉理工大学材料科学与工程专业本科毕业,2009年武汉理工大学建筑材料与工程专业硕士毕业,2014年美国密歇根大学安娜堡分校土木工程专业博士毕业,2017年武汉理工大学材料科学与工程学院工作至今。目前主要从事低碳胶凝材料、超高性能水泥基材料方面的研究工作。发表论文30余篇,包括Cement and Concrete Research、ACS Sustainable Chemistry & Engineering、《硅酸盐学报》等。iuzc9@whut.edu.cn   
作者简介:  谭益成,2019年6月于武汉理工大学获得工学学士学位。现为武汉理工大学材料科学与工程学院硕士研究生,在刘志超教授的指导下进行研究。目前主要研究领域为γ-C2S的碳化环境调控及其机理研究。
引用本文:    
谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
TAN Yicheng, LIU Zhichao, WANG Fazhou. Study on Carbonation Characteristics of γ-C2S with the Addition of MgCl2 at -10 ℃. Materials Reports, 2023, 37(1): 22010270-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010270  或          http://www.mater-rep.com/CN/Y2023/V37/I1/22010270
1 中国建筑材料联合会. 石材, 2021(5), 3.
2 Popescu C D, Muntean M, Sharp J H. Cement and Concrete Composites, 2003, 25(7), 689.
3 Roy D M, Oyefesobi S O. Journal of the American Ceramic Society, 1977, 60(3-4), 178.
4 Qiu M. Preparation and carbonation hardening properties of self-pulverized low-calcium cement. Master’s Thesis, Henan Polytechnic University, China, 2018(in Chinese).
邱满. 自粉化低钙水泥的制备及其碳酸化硬化性能研究. 硕士学位论文, 河南理工大学, 2018.
5 Li L K, Liu Q, Huang T Y, et al. Materials Reports, 2022(19), 1(in Chinese).
李林坤, 刘琦, 黄天勇, 等. 材料导报, 2022(19), 1.
6 Bertos M F, Simons S J R, Hills C D, et al. Journal of Hazardous Materials, 2004, B112(193-205).
7 Sun Y F, Li F J, He W, et al. Clean Coal Technology, 2021, 27(2), 237(in Chinese).
孙一夫, 李凤军, 何文, 等. 洁净煤技术, 2021, 27(2), 237.
8 Ye J Y, Zhang W S, Shi D, et al. Journal of the Chinese Ceramic Society, 2019, 47(11), 1582(in Chinese).
叶家元, 张文生, 史迪, 等. 硅酸盐学报, 2019, 47(11), 1582.
9 Ashraf W, Olek J. Cement and Concrete Composites, 2018, 93, 85.
10 Mu Y, Liu Z, Wang F. ACS Sustainable Chemistry & Engineering, 2019, 7(7), 7058.
11 Zhao S, Liu Z, Mu Y, et al. Cement and Concrete Composites, 2020, 111, 103637.
12 Li K W, Liu J H, Zhang C, et al. Materials Reports, 2021, 35(S2), 183(in Chinese).
李凯雯, 刘娟红, 张超, 等. 材料导报, 2021, 35(S2), 183.
13 Hu Y B, Miao G Y, Xiong Y. Journal of Building Materials, 2017, 20(6), 975(in Chinese).
胡玉兵, 苗广营, 熊羽. 建筑材料学报, 2017, 20(6), 975.
14 Wang J L, Sun X B, Yang Z F. Bulletin of the Chinese Ceramic Society, 2014, 33(12), 3331(in Chinese).
王稷良, 孙小彬, 杨志峰. 硅酸盐通报, 2014, 33(12), 3331.
15 Yan Y Z, Ba H J. Journal of the Chinese Ceramic Society, 2007(8), 1125(in Chinese).
杨英姿, 巴恒静. 硅酸盐学报, 2007(8), 1125.
16 Zhang F, Bai Y, Cai Y B. Materials Reports, 2021, 35(10), 10055(in Chinese).
张丰, 白银, 蔡跃波. 材料导报, 2021, 35(10), 10055.
17 Guo J J, Zhu G C, Xiao Y D. China Concrete and Cement Products, 2014(11), 84(in Chinese).
郭进军, 朱国闯, 肖欲东. 混凝土与水泥制品, 2014(11), 84.
18 Dong S H, Tao C Y, Jiang S H, et al. Concrete, 2019(11), 171(in Chinese).
董淑慧, 陶成云, 江守恒, 等. 混凝土, 2019(11), 171.
19 Liu X B. Research on critical strength of frozen injury and microstructure of calcium-enriched fly ash concrete. Master’s Thesis, Harbin Institute of Technology, China, 2016(in Chinese).
刘晓波. 增钙粉煤灰混凝土抗冻临界强度及显微结构研究. 硕士学位论文, 哈尔滨工业大学, 2006.
20 He Z M, Ba H J, Wang Y. Materials Science and Technology, 2005(4), 101(in Chinese).
何忠茂, 巴恒静, 王岩. 材料科学与工艺, 2005(4), 101.
21 Deng J A, Li D D, Li Q D, et al. Journal of the Chinese Ceramic Society, 1983(1), 85(in Chinese).
邓君安, 李德栋, 李启棣, 等. 硅酸盐学报, 1983(1), 85.
22 Wang J Y, Ye J Y, Cheng H. Journal of the Chinese Ceramic Society, 2019, 48(8), 1285(in Chinese).
王敬宇, 叶家元, 程华. 硅酸盐学报, 2019, 48(8), 1285.
23 Drouet E, Poyet S, Le Bescop P, et al. Cement and Concrete Research, 2019, 115, 445.
24 Mu Y, Liu Z, Wang F, et al. Journal of CO2 Utilization, 2018, 27, 405.
25 Zhao S X, Liu Z C, Wang F Z, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(19), 6673.
26 Lee S, Sin D H, Cho K. Crystal Growth & Design, 2015, 15(2), 610.
27 Ahn J W, Park W K, You K S, et al. Solid State Phenomena, 2007, 124-126, 707.
28 Folk R L. Journal of Sedimentary Research, 1974, 44(1), 40.
29 Hu Z S, Shao M H, Li H Y, et al. Materials Science and Technology, 2008, 24(12), 1438.
30 Wang T, Yi Z W, Guo R N, et al. Chemical Engineering Journal, 2021, 423, 130157.
31 Duan F, He B. RSC Advances, 2012, 2(31), 11664.
32 Santos R M, Bodor M, Dragomir P N, et al. Minerals Engineering, 2014, 59, 71.
[1] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[2] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[3] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[4] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[5] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[6] 徐县, 康晶, 蔡新华, 王维康. 碱激发锌渣胶凝材料设计制备与微观结构分析[J]. 材料导报, 2022, 36(22): 21050274-7.
[7] 田青, 屈孟娇, 祁帅, 姚田帅, 张苗, 许鸽龙, 邓德华. 低强型水泥乳化沥青砂浆抗压强度的计算模型[J]. 材料导报, 2022, 36(22): 21040170-5.
[8] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[9] 孙赫男, 关岩, 毕万利, 孙美硕. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[J]. 材料导报, 2022, 36(19): 20120126-6.
[10] 吴贤国, 王雷, 陈虹宇, 冯宗宝, 覃亚伟, 徐文胜. 基于随机森林-NSGAⅡ高性能混凝土耐久性配合比的多目标优化研究[J]. 材料导报, 2022, 36(17): 20110015-7.
[11] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[12] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[13] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[14] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[15] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed