Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22100251-9    https://doi.org/10.11896/cldb.22100251
  无机非金属及其复合材料 |
功能化MXene在锂硫电池中应用研究进展
姜宇1,2, 杨蓉1,2,*, 张乾伟1,2, 樊潮江1,2, 董鑫1,2, 蒋百铃2, 燕映霖1
1 西安理工大学复合材料及其产品智能制造技术国际联合研究中心,西安 710048
2 西安理工大学材料科学与工程学院,西安 710048
Research Progress of the Use of Functionalized MXene in Lithium-Sulfur Batteries
JIANG Yu1,2, YANG Rong1,2,*, ZHANG Qianwei1,2, FAN Chaojiang1,2, DONG Xin1,2, JIANG Bailing2, YAN Yinglin1
1 China International Research Center for Composite and Intelligent Manufacturing Technology, Xi'an University of Technology, Xi'an 710048, China
2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
下载:  全 文 ( PDF ) ( 40615KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 MXene作为新兴的二维导电材料,在储能器件的电极和电解质设计及应用等方面引起了科研人员的兴趣。近年来,在锂硫电池研究中,MXene材料优异的导电性及对多硫化物的吸附作用使锂硫电池的性能明显提升。功能化设计可避免MXene材料自堆叠等缺陷,调控其对多硫化物的吸附强度,并赋予MXene催化多硫化物氧化还原反应的功能。本文综述了功能化MXene材料目前主要的制备方式及其对表面官能团的影响,分析了功能化MXene对多硫化物的吸附作用和对穿梭效应的抑制机制及对氧化还原反应动力学的提升机理,讨论了MXene材料在锂硫电池应用中可能存在的问题和改性前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜宇
杨蓉
张乾伟
樊潮江
董鑫
蒋百铃
燕映霖
关键词:  MXene材料  制备  锂硫电池  穿梭效应  催化    
Abstract: As a rising two-dimensional conductive material, MXene has attracted researchers' interest in the design and application of electrodes and electrolytes of energy storage devices. In recent years, the performance of lithium sulfur batteries have significantly improved for the excellent conductivity of MXene material and its adsorption to polysulfides. The functionalized design of MXene can avoid the defects of self-stacking, regulate the adsorption strength of polysulfides, and catalyze the redox reaction of polysulfides. From the perspective of functionalized MXene, the main preparations and their influence on the surface functional group of MXene are reviewed. The adsorption to polysulfides and mechanism of shuttle effect inhibition, and the enhancement mechanism of redox kinetics of functionalized MXene are analyzed. The possible problems and modification prospects of MXene in the application of lithium sulfur batteries are discussed.
Key words:  MXene material    preparation    lithium-sulfur battery    shuttle effect    catalysis
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  O646  
基金资助: 国家自然科学基金(51974242);陕西省科技厅一般项目-工业领域(2024GX-YBXM-33);咸阳市科技局重点研发项目(2021ZDYF-GY-0029);中国博士后面上资助项目( 2019M653706)
通讯作者:  *杨蓉,西安理工大学材料科学与工程学院教授、博士研究生导师。2009年于西安交通大学材料物理与化学专业获博士学位,2011年公派至韩国国立庆尚大学中韩博士后交流,2012年公派至美国佐治亚理工学院交流访问。目前主要从事锂硫电池电极材料及电解液、锂硫电池全电池技术、电化学腐蚀与防护等方面的研究工作。近年来,在电池领域发表论文60余篇,包括ACS Applied Materials & Interfaces、Materials Characterization、Journal of Alloys and Compounds、 Electrochimica Acta等。yangrong@xaut.edu.cn   
作者简介:  姜宇,2018年6月、2021年6月于宝鸡文理学院获得工学学士学位和理学硕士学位。现为西安理工大学材料科学与工程学院博士研究生,在蒋百灵教授及杨蓉教授的指导下进行研究。目前主要研究领域为二维MXene材料在锂硫电池中的应用研究。
引用本文:    
姜宇, 杨蓉, 张乾伟, 樊潮江, 董鑫, 蒋百铃, 燕映霖. 功能化MXene在锂硫电池中应用研究进展[J]. 材料导报, 2024, 38(12): 22100251-9.
JIANG Yu, YANG Rong, ZHANG Qianwei, FAN Chaojiang, DONG Xin, JIANG Bailing, YAN Yinglin. Research Progress of the Use of Functionalized MXene in Lithium-Sulfur Batteries. Materials Reports, 2024, 38(12): 22100251-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100251  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22100251
1 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058), 928.
2 Tarascon J M, Armand M. Nature, 2001, 414(6861), 359.
3 Manthiram A, Fu Y, Chung S H, et al. Chemical Reviews, 2014, 114(23), 11751.
4 Wang Z, Shen J, Liu J, et al. Advanced Materials, 2019, 31(33), 2228.
5 Mikhaylik Y V, Akridge J R. Journal of the Electrochemical Society, 2004, 151(11), A1969.
6 Shen J, Xu X, Liu J, et al. Advanced Energy Materials, 2021, 11(26), 673.
7 Di Donato G, Ates T, Adenusi H, et al. Batteries & Supercaps, 2022, 5(7), 97
8 Lukatskaya M R, Mashtalir O, Ren C E, et al. Science, 2013, 341(6153), 1502.
9 Liang X, Nazar L F. 2D metal carbides and nitrides (MXenes), Springer Nature Press, USA, 2019, pp.381.
10 Zhang C, Cui L, Abdolhosseinzadeh S, et al. Information, 2020, 2(4), 613.
11 Wei C, Tao Y, An Y, et al. Advanced Functional Materials, 2020, 30(45), 4613.
12 Zhang Y L, Yan Y, Qiu H, et al. Journal of Materials Science & Technology, 2022, 103, 42.
13 Naguib M, Barsoum M W, Gogotsi Y. Advanced Materials, 2021, 33(39), 3393.
14 Alhabeb M, Maleski K, Anasori B, et al. Chemistry of Materials, 2017, 29(18), 7633.
15 Lukatskaya M R, Bak S M, Yu X, et al. Advanced Energy Materials, 2015, 5(15), 589.
16 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23(37), 4248.
17 Lei J C, Zhang X, Zhou Z. Frontiers of Physics, 2015, 10(3), 276.
18 Huang Y, Lu Q, Wu D, et al. Carbon Energy, 2022, 4(4), 598.
19 Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Nature, 2014, 516(7529), 78.
20 Li Y, Shao H, Lin Z, et al. Nature Materials, 2020, 19(8), 894.
21 Ghazaly A E, Ahmed H, Rezk A R, et al. ACS Nano, 2021, 15(3), 4287.
22 Zhang T, Pan L, Tang H, et al. Journal of Alloys and Compounds, 2017, 695, 818.
23 Feng A, Yu Y, Jiang F, et al. Ceramics International, 2017, 43(8), 6322.
24 Zheng W, Yang L, Zhang P G, et al. Materials Reports, 2018, 32(15), 2513 (in Chinese).
郑伟, 杨莉, 张培根, 等. 材料导报, 2018, 32(15), 2513.
25 Kumar J A, Prakash P, Krithiga T, et al. Chemosphere, 2022, 286, 131607.
26 Sun W, Shah S, Chen Y, et al. Journal of Materials Chemistry A, 2017, 5(41), 21663.
27 Pang S Y, Wong Y T, Yuan S, et al. Journal of the American Chemical Society, 2019, 141(24), 9610.
28 Yang S, Zhang P, Wang F, et al. Angewandte Chemie, 2018, 130(47), 15717.
29 Li M, Lu J, Luo K, et al. Journal of the American Chemical Society, 2019, 141(11), 4730.
30 Li Y B, Shao H, Lin Z F, et al. Nature Materials, 2020, 19(8), 894.
31 Kamysbayev V, Filatov A S, Hu H C, et al. Science, 2020, 369(6506), 979
32 Kang K, Meng Y S, Breger J, et al. Science, 2006, 311(5763), 977.
33 Gogotsi Y. Nature Materials, 2015, 14(11), 1079.
34 Xu C, Wang L, Liu Z, et al. Nature Materials, 2015, 14(11), 1135.
35 Geng D, Zhao X, Chen Z, et al. Advanced Materials, 2017, 29(35), 72.
36 Yu Z, Shao Y, Ma L, et al. Advanced Materials, 2022, 34(7), 618.
37 Liang Z, Shen J, Xu X, et al. Advanced Materials, 2022, 34(30), 102.
38 Yin Y X, Xin S, Guo Y G, et al. Angewandte Chemie-International Edition, 2013, 52(50), 186.
39 Zhao Q, Zhu Q, Liu Y, et al. Advanced Functional Materials, 2021, 31(21), 457.
40 Liang J, Sun Z H, Li F, et al. Energy Storage Materials, 2016, 2, 76.
41 Zhang Q, Zhang X F, Xiao Y H, et al. ACS Omega, 2020, 5(45), 272.
42 Liang X, Garsuch A, Nazar L F. Angewandte Chemie, 2015, 127(13), 3979.
43 Liang X, Rangom Y, Kwok C Y, et al. Advanced Materials, 2017, 29(3), 3040.
44 Liu K, Fan Y, Ali A, et al. Nanoscale, 2021, 13(5), 2963.
45 Meng X, Sun Y, Yu M, et al. Small Science, 2021, 1(9), 21.
46 Sim E S, Chung Y C. Applied Surface Science, 2018, 435, 210.
47 Sim E S, Yi G S, Je M, et al. Journal of Power Sources, 2017, 342, 64.
48 Rao D, Zhang L, Wang Y, et al. Journal of Physical Chemistry C, 2017, 121(21), 11047.
49 Zhao Y, Zhao J. Applied Surface Science, 2017, 412, 591.
50 Wang D S, Li F, Lian R Q, et al. ACS Nano, 2019, 13(10), 11078.
51 Lin H, Yang D D, Lou N, et al. Ceramics International, 2019, 45(2), 1588.
52 Zhang Q, Zhang X F, Xiao Y H, et al. ACS Omega, 2020, 5(45), 29272.
53 Li H, Zhu G, Zhang J W, et al. Materials Reports, 2022, 36(9), 17 (in Chinese).
李辉, 朱刚, 张建卫, 等. 材料导报, 2022, 36(9), 17.
54 Liu X B A, Shao X F, Li F, et al. Applied Surface Science, 2018, 455, 522.
55 He Y, Zhao Y, Zhang Y, et al. Energy Storage Materials, 2022, 47, 434.
56 Liang L, Niu L, Wu T, et al. ACS Nano, 2022, 16(5), 7971
57 Li N, Cao W, Liu Y, et al. Colloids and Surfaces A, 2019, 573, 128.
58 Kang H L, Han L S, Chen S L, et al. Polymers, 2022, 14(19), 4094
59 Chen Z Y, Asif M, Wang R C, et al. Chemical Record, 2022, 22(3), 261.
60 Li N, Xie Y, Peng S, et al. Journal of Energy Chemistry, 2020, 42, 116.
61 Zhang B, Luo C, Zhou G M, et al. Advanced Functional Materials, 2021, 31(26), 793.
62 Chen Z, Yang X B, Qiao X, et al. Journal of Physical Chemistry Letters, 2020, 11(3), 885.
63 Zhao W L, Lei Y J, Zhu Y P, et al. Nano Energy, 2021, 86, 106120.
64 Xiao Z, Yang Z, Li Z, et al. ACS Nano, 2019, 13(3), 3404.
65 Xiong D, Huang S, Fang D, et al. Small, 2021, 17(34), 7442.
66 Zhong X, Wang D, Sheng J, et al. Nano Letters, 2022, 22(3), 1207.
67 Wang D S, Li F, Lian R Q, et al. ACS Nano, 2019, 13(10), 11078.
68 Bao W, Liu L, Wang C, et al. Advanced Energy Materials, 2018, 8(13), 2485.
69 Jiang G, Zheng N, Chen X, et al. Chemical Engineering Journal, 2019, 373, 1309.
70 Zhang D, Wang S, Hu R, et al. Advanced Functional Materials, 2020, 30(30), 2471.
71 Deng R Y, Wang M, Yu H Y, et al. Energy & Environmental Materials, 2022, 5(3), 777.
72 Wang H, Wang L, Zhang H, et al. Chemical Engineering Journal, 2022, 431, 134179.
73 Wei C, Tian M, Wang M, et al. ACS Nano, 2020, 14(11), 16073.
74 Gao X T, Xie Y, Zhu X D, et al. Small, 2018, 14(41), 2443.
75 Zhang H, Yang L, Zhang P, et al. Advanced Materials, 2021, 33(21), 8447.
76 Xue L X, Li Y Y, Hu A J, et al. Small Structures, 2022, 3(3), 70.
77 Qiu S Y, Wang C, Jiang Z X, et al. Nanoscale, 2020, 12(32), 16678.
78 Jiao L, Zhang C, Geng C, et al. Advanced Energy Materials, 2019, 9(19), 219.
79 Wang Z, Yu K, Feng Y, et al. Applied Materials & Interfaces, 2019, 11(47), 44282.
80 Wang Z, Yu K, Gong S, et al. Nanoscale, 2020, 12(36), 18950.
81 Song C, Zhang W, Jin Q, et al. Journal of Power Sources, 2022, 520, 230902.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[3] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[4] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[5] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[6] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[7] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[8] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[9] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[10] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[11] 李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
[12] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[13] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[14] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[15] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed