Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22110062-10    https://doi.org/10.11896/cldb.22110062
  金属与金属基复合材料 |
红外抗反射微纳结构刻蚀制备研究进展
李雪伍1, 王红星1,2, 郭伟玲2, 邢志国2, 黄艳斐2,*, 王海斗3,*
1 西安科技大学机械工程学院,西安 710054
2 中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 中国人民解放军陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Progress on the Preparation of Infrared Anti-reflection Micro-Nano Structure by Etching Process
LI Xuewu1, WANG Hongxing1,2, GUO Weiling2, XING Zhiguo2, HUANG Yanfei2,*, WANG Haidou3,*
1 School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces of PLA, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces of PLA, Beijing 100072, China
下载:  全 文 ( PDF ) ( 21559KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 “蛾眼效应”指光波折射率因蛾眼表面微纳结构在深度方向呈连续性变化,使大部分光被吸收,只有极少被反射的现象。受“蛾眼效应”启发,在材料表面制备微纳结构使其具有独特抗反射性能受到广泛关注,在太阳能电池、光电探测器、光电二极管和军事隐身等领域有广阔应用前景。本文梳理不同微纳结构抗反射原理,并对红外抗反射结构的不同刻蚀制备方法及其应用进行综述,总结了化学刻蚀、反应离子刻蚀、超快激光刻蚀等红外抗反射结构制备方法的特点以及对抗反射性能的影响,阐述红外抗反射结构在红外探测、红外热成像和隐身等方面的应用,并对抗反射结构制备方法研究方向与未来前景进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪伍
王红星
郭伟玲
邢志国
黄艳斐
王海斗
关键词:  抗反射结构  红外  微纳结构  刻蚀制备    
Abstract: The ‘moth-eye effect' refers to the phenomenon that the refractive index of the light wave changes continuously due to the micro-nano structures of the moth-eye surface in the depth direction, so that most of the light is absorbed and only rarely reflected. Inspired by the ‘moth-eye effect', the preparation of micro-nano structured surfaces on materials has attracted wide attention owing to its unique anti-reflection properties. It has broad application prospects in solar cells, photodetectors, photodiodes, and military stealth. In this paper, the antireflection principles of different micro-nano structures are sorted, and the preparation methods and applications of different etching of infrared antireflective structures are reviewed. The characteristics of infrared antireflection structure preparation methods, such as chemical etching, reactive ion etching, and ultrafast laser etching, and the influence of the antireflection performance are summarized. Applications of infrared antireflection structures in infrared detection, infrared thermal imaging and stealth are described. The research direction and future prospects of the preparation methods for anti-reflection structures are discussed.
Key words:  anti-reflective structure    infrared    micro-nano structure    etching method
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TG141  
  TG177  
  TG178  
基金资助: 国家自然科学基金(52275227;52275211;52130509);陕西省创新能力支撑计划科技新星项目(2021KJXX-38)
通讯作者:  *黄艳斐,中国人民解放军陆军装甲兵学院再制造技术国家重点实验室助理研究员。从事表面工程与再制造工程方面的教学与科研工作。
王海斗,研究员,博士研究生导师,中国人民解放军陆军装甲兵学院机械产品再制造国家工程研究中心主任。现在主要从事表面工程、再制造和摩擦学方面的研究。   
作者简介:  李雪伍,清华大学摩擦学国家重点实验室博士后,教授,博士研究生导师。主要研究方向:涂层表界面行为与调控、表面工程与摩擦学、金属腐蚀与防护。在Journal of Magnesium and Alloys、Carbon、Applied Surface Science、Materials & Design、Ceramics International等期刊发表SCI检索论文30余篇,其中ESI Hot Paper(前0.1%)及ESI Highly Cited Paper(前1%)6篇。申请国家发明专利10余项,授权5项。
引用本文:    
李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
LI Xuewu, WANG Hongxing, GUO Weiling, XING Zhiguo, HUANG Yanfei, WANG Haidou. Research Progress on the Preparation of Infrared Anti-reflection Micro-Nano Structure by Etching Process. Materials Reports, 2024, 38(6): 22110062-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110062  或          http://www.mater-rep.com/CN/Y2024/V38/I6/22110062
1 Wu J H, Tu J L, Li L, et al. Surfaces and Interfaces, 2022, 30, 101918.
2 Joshya R S, Carrère H, Ibarra-sierra V G, et al. Advanced Functional Materials, 2021, 31(27), 2102003.
3 Kim K, Ki B, Bong H, et al. Advanced Optical Materials, 2020, 15(8), 2000143.
4 Quan C, Gu S, Zou J L, et al. Optics Express, 2023, 30(24),43741.
5 Lin S H, Zhang J, Ai L, et al. Materials Reports, 2019, 33(21), 3588(in Chinese).
林昇华, 张景, 艾玲, 等. 材料导报, 2019, 33(21), 3588.
6 Hao T, Zheng W, Wang W Q, et al. Journal of Applied Physics, 2019, 126(2), 025303.
7 Bae S I, Lee Y, Seo Y H. Nanoscale, 2019, 11(3), 856.
8 Guo S, Yang L, Dai B, et al. Physica Status Solidi A-applications and Materials Science, 2020, 217(16), 2000149.
9 Busse L E, Frantz J A, Shaw L B, et al. Applied Optics, 2015, 54(31), F303.
10 Chan L W, Morse D E, Gordon M J. Bioinspiration & Biomimetics, 2018, 13(4), 041001.
11 Zhou L, Li X, He D, et al. Actuators, 2022, 11(2), 28.
12 Wang S D, Wang J Y. Applied Surface Science, 2019, 476, 1035.
13 Navarro-baena I, Jacobo-martin A, Hernandez J J, et al. Nanoscale, 2018, 10(33), 15496.
14 Shanmugam N, Pugazhendhi R, Elavarasan R M, et al. Energies, 2020, 13(10), 2631.
15 Dong T T, Chen C, Xiong T, et al. Optics and Optoelectronic Technology, 2017, 3(15), 57(in Chinese).
董亭亭, 陈驰, 熊涛, 等. 光学与光电技术, 2017, 3(15), 57.
16 Chuang S Y, Chen H L, Shieh J, et al. Nanoscale, the Royal Society of Chemistry, 2010, 2(5), 799.
17 Choi J S, An J H, Lee J K, et al. Polymers, Multidisciplinary Digital Publishing Institute, 2020, 12(2), 296.
18 Huang Z, Shi X, Wang G, et al. Solar Energy, 2020, 204, 738.
19 Liu Y, Song Y, Niu S, et al. RSC Advances, 2016, 6(110), 108974.
20 Yu X, Ohta M, Takizawa N, etal. Applied Optic, 2019, 58(35), 9595.
21 Kaufmann P, Chrzanowski H M, Vanselow A, et al. Optics Express, 2022, 30(4), 5926.
22 Cameron D G, Escolar D, Goplen T G, et al. Applied Spectroscopy, 1980, 34(6), 646.
23 Schardt M, Murr P J, Rauscher M S, et al. Optics Express, Optica Publishing Group, 2016, 24(7), 7767.
24 Lafargue T T, Vaucelle R, Caliot C, et al. Scientific Reports, Nature Publishing Group, 2022, 12(1), 7814.
25 Kim K, Song G Y, Kim Y T, et al. Surface and Coatings Technology, 2017, 332, 262.
26 Kesmez Ö, Akarsu E, Çamurlu H E, et al. Ceramics International, 2018, 44(3), 3183.
27 Lotz M R, Petersen C R, Markos C, et al. Optica, 2018, 5(5), 557.
28 Wang G G, Lin Z Q, Zhao D D, et al. Langmuir, 2018, 34(30), 8898.
29 Liu W F, Zhao Z C, Zhou Z Y, et al. Journal of Materials Science and Engineering, 2020, 38(6), 880(in Chinese).
刘文峰, 赵增超, 周子游, 等. 材料科学与工程学报, 2020, 38(6), 880.
30 Papadopoulos A, Skoulas E, Mimidis A, et al. Advanced Materials, 2019, 31(32), 1901123.
31 Luo B W, Liu D B, Luo F, et al. Materials Reports, 2018, 32(3), 398(in Chinese).
罗炳威, 刘大博, 罗飞, 等. 材料导报, 2018, 32(3), 398.
32 Guo W, Dong L H, Wang H D, et al. China Surface Engineering, 2018, 31(3), 168(in Chinese).
郭伟, 董丽虹, 王海斗, 等. 中国表面工程, 2018, 31(3), 168.
33 Wang D T, Zhou H, Fan T Y. Materials Reports, 2018, 32(19), 3465.
王丹彤, 周涵, 范同祥. 材料导报, 2018, 32(19), 3465.
34 An Z Y, Zhang N. Journal of the Chinese Ceramic Society, 2022, 50(3), 661(in Chinese).
安哲毅, 张楠. 硅酸盐学报, 2022, 50(3), 661.
35 Kompanets V, Dormidonov A, Chekalin S, et al. Optics Letters, 2021, 46(13), 3187.
36 Han Z W, Jiao Z B, Niu S C, et al. Progress in Materials Science, 2019, 103, 1.
37 Fathima M I, Wilson K S J. International Journal of Modern Physics C, 2020, 31(5), 2050076.
38 Li X. Research on femtosecond laser fabrication of micro/nano structure and its anti-reflection. Ph.D. Thesis, Properties University of Chinese Academy of Sciences, China, 2021 (in Chinese).
李珣. 微纳结构飞秒激光制备技术及其抗反射特性研究, 博士学位论文, 中国科学院大学, 2021.
39 Zheng B X, Wang W J, Jiang G D, et al. Applied Physics B-Lasers and Optics, 2016, 122(6), 180.
40 Kim D M, Park J S, Jung S W, et al. Sensors, 2021, 21(9), 3191.
41 Yang S, Ge P, Zhang L, et al. Solar Energy, 2016, 134, 392.
42 Hua X S, Zhang Y J, Wang H W. Solar Energy Materials & Solar Cells, 2010, 94(2), 258.
43 He Z J. Study on the preparation of wide-band antireflective micro/nano composite metal surface by nanosecond laser. Master's Thesis, Guangdong University of Technology, China, 2019(in Chinese).
何志键. 纳秒激光制备宽波段抗反射微纳复合结构金属表面. 硕士学位论文, 广东工业大学, 2019.
44 Ikhsanov R S, Protsenko I E, Smetanin I V, et al. Optics Letters, 2020, 45(9), 26442647.
45 Chylek P, Zhan J. Applied Optics, 1980, 29(28), 3984.
46 Panahpour A, Mahmoodpoor A, Lavrinenko A V. Hysical Review B, 2019, 100(7), 075427.
47 Zhan C, Chen X J, Yi J, et al. Nature Reviews Chemistry, 2018, 2(9), 216.
48 Zhao J L, Qi H J, Wang H, et al. Optics Letters, 2015, 40(22), 5168.
49 Rizza C, Palange E, Alecci M, et al. Physical Review Applied, 2020, 14(3), 034040.
50 Lertvachirapaiboon C, Baba A, Ekgasit S, et al. Sensors and Actuators B: Chemical, 2017, 249, 39.
51 Chen T, Wang W, Tao T, et al. Applied Surface Science, 2020, 509, 145182.
52 Tan X, Tao Z, Yu M, et al. Scientific Reports, Nature Publishing Group, 2018, 8(1), 7863.
53 Lan D J, Zhao Z H, Gao Z G, et al. Journal of Magnetism and Magnetic Materials, 2020, 512, 167065.
54 Rebigan R, Kusko M, Sorohan G, et al. Journal of Optoelectronics and Advanced Materials, 2020, 22(3-4), 136.
55 Lin Y K, Chen Y S, Hsueh C H. Results in Physics, 2019, 12, 244.
56 Shin S H, Liao Y, Son B, et al. Journal of Materials Chemistry C, 2021, 9(31), 9884.
57 Zhang Y Y, Shin S H, Kang H J, et al. Applied Surface Science, 2021, 546, 149083.
58 Gonchar K A, Osminkina L A, Galkin R A, et al. Journal of Nanoelectronics and Optoelectronics, 2012, 7(6), 602.
59 Sullivan J, Ferrer-argemi L, Yu Z Q, et al. IEEE, 2019, 857.
60 Zhong H, Guo, A R, Guo G H, et al. Nanoscale Research Letters, 2016, 11(322), 1.
61 Dutta A, Alam M S, Maiti P, et al. Solar Energy, 2021, 221, 185.
62 Lova P, Soci C. Micromachines, 2020, 11(6), 573.
63 Lai W X, Liao G L, Shi T L, et al. Semiconductor Technology, 2006(6), 414(in Chinese).
来五星, 廖广兰, 史铁林, 等. 半导体技术, 2006(6), 414.
64 Hao H J, Zhang Y L, Lu W J. Equipment for Electronic Products Manufacturing, 2005(7), 48(in Chinese).
郝慧娟, 张玉林, 卢文娟. 电子工业专用设备, 2005(7), 48.
65 Zhou C, Dong J P, Zhang B B, et al. Superlattices and Microstructures, 2020, 137, 106353.
66 Wu J J, Ye X, Sun L X, et al. Optics Express, 2018, 26(2), 1361.
67 Sun H, Liu J X, Zhou C, et al. ACS Applied Materials and Interfaces, 2021.
68 Fei L, Cui Y, Wan D, et al. Optical Materials, 2018, 84, 722.
69 Lin Z Q, Wang G G, Li L H, et al. Applied Surface Science, 2019, 470, 395.
70 Cheng H J, Dong M, Tan Q W, et al. Chinese Optics Letters, 2020, 17(12), 122401.
71 Steglich M, Käsebier T, Schrempel F, et al. Infrared Physics & Techno-logy, 2015, 69, 218.
72 Dong L T, Zhang Z A, Wang , et al. Applied Optics, 2019, 58(24), 6706.
73 Li X, Li M, Liu H J, et al. Molecules, 2021, 26(14), 4278.
74 Zhang F, Wang H R, Wang C, et al. Optics and Lasers in Engineering, 2020, 129, 106062.
75 Wang H R, Zhang F, Wang C, et al. Optics & Laser Technology, 2022, 149, 107931.
76 Zhang F, Duan J A, Zhou X F, et al. Optics Express, 2018, 26(26), 34016.
77 Parmar V, Shin Y C. Applied Surface Science, 2018, 459, 86.
78 Li X, Li M, Liu H J. Chinese Optics Letters, 2021, 19(9), 091404.
79 Liu H L, Hu J, Jiang L, et al. Applied Surface Science, 2020, 528, 146804.
80 Lou R, Zhang G D, Li G Y, et al. Micromachines, 2020, 11(1), 20.
81 Zhai Y, Li Y, Ji J, et al. ACS Applied Nano Materials, 2020, 3(1), 149.
82 Huang M, Chen J, Xu J, et al. Infrared Physics & Technology, 2018, 90, 110.
83 Zhou W, Li R, Li M, et al. Ceramics International, 2022, 48(13), 18983.
84 Rebigan R, Avram A, Tudor R, et al. Romanian Journal of Information Science and Technology, 2021, 24(2), 233.
85 Wang J, Li Y, Cui J, et al. Nanoscale Research Letters, 2018, 13(1), 361.
86 An Z, Li Y, Luo X, et al. Matter, 2022, 5(6), 1937.
87 Liu J L, Zhang L M, Wu H J, et al. Chemical Engineering Journal, 2021, 411, 128601.
88 Ma X, Du B, Tan S, et al. Nanomaterials, Multidisciplinary Digital Publishing Institute, 2021, 11(10), 2622.
89 Gou J, Cansizoglu H, Bartolo-Perez C, et al. Nanophotonics, 2019, 8(10), 1747.
90 Honkanen A P, Ferrero C, Guigay J P, et al. Journal of Applied Crystallography, 2018, 51, 514.
91 Qin G, Dong Y, Zhang P, et al. Optics and Lasers in Engineering, 2023, 160, 107288.
92 Falster V, Jarabo A, Frisvad J R. Computer Graphics Forum, 2021, 39(7), 231.
93 Chen L, Jing X, Wang L, et al. Optics & Laser Technology, 2014, 62, 95.
94 Zhao Z H, Lan D, Zhang L M, et al. Advanced Functional Materials, 2022, 32(15), 2111045.
[1] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[2] 陈渊泽, 牛春晖, 王雷, 杨明庆, 张世玉, 吕勇. 聚苯胺红外电致变色器件研究进展[J]. 材料导报, 2024, 38(5): 22090259-10.
[3] 贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
[4] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[5] 温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
[6] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[7] 孟真, 李广德, 崔光振, 王义, 刘东青, 程海峰. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 22040001-8.
[8] 潘权子, 刘文晓, 孟则达, 罗莉, 刘守清. 压电增强二硫化钼/氧化锌近红外光催化降解氨氮[J]. 材料导报, 2023, 37(19): 22030259-7.
[9] 王言磊, 陆军, 梁鹏飞, 罗婷, 颜川奇. 不同温拌剂对高黏沥青流变及微观特性影响研究[J]. 材料导报, 2023, 37(16): 22010171-6.
[10] 唐昭敏, 田维君. Fe3O4磁性纳米药物用于克服肿瘤多药耐药性的研究[J]. 材料导报, 2023, 37(15): 22010219-7.
[11] 宋绍意, 黎学明, 杨文静, 何苗, 倪婕, 简燕, 曾旭钟. 可催化高氯酸钠热分解的三维微纳多孔铜的合成[J]. 材料导报, 2023, 37(12): 21080141-6.
[12] 童瀚翔, 李红盛, 刘延领, 吴爱民, 黄昊. 红外隐身[Si/MgF2]N一维光子晶体设计与计算[J]. 材料导报, 2022, 36(Z1): 21060196-5.
[13] 杜辉, 陈巧, 刘婷, 贺毅, 金应荣. 非线性晶体和光电材料硒化镓的研究进展[J]. 材料导报, 2022, 36(5): 20080191-10.
[14] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[15] 唐昭敏, 田维君. pH响应型纳米药物用于化疗-光热协同治疗肿瘤[J]. 材料导报, 2022, 36(3): 21120187-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed