Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22110027-7    https://doi.org/10.11896/cldb.22110027
  高分子与聚合物基复合材料 |
基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究
杨程程, 柳力*, 刘朝晖*, 黄优, 刘磊鑫
长沙理工大学交通运输工程学院,长沙 410114
Study on the Adhesion Characteristics of Silane Coupling Agent Modified Basalt Fiber to Asphalt Based on Molecular Dynamics
YANG Chengcheng, LIU Li*, LIU Zhaohui*, HUANG You, LIU Leixin
School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 19795KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为增强玄武岩纤维(BF)与沥青的界面粘附特性,采用接枝KH550型硅烷偶联剂对BF表面进行改性。采用扫描电子显微镜和红外光谱仪对KH550接枝改性BF进行微观表征,并基于分子动力学方法,运用“化学接枝”和“叠加”方式建立沥青-BFKH550界面模型,研究了KH550接枝改性对BF与沥青粘附特性的增强效果及增强机理。结果表明,KH550接枝改性后,BFKH550表面凸起增多、粗糙度增加,增大了BF与沥青的粘结强度;BF表面接枝的KH550个数越多,与沥青的粘附性能越好,25 ℃时BF表面接枝20个KH550的界面能相比不接枝KH550时增加了26.1%;经KH550接枝改性后,沥青四组分的扩散系数变化规律与不接枝KH550时相同,即饱和分>芳香分>胶质>沥青质,但其扩散系数整体比不接枝KH550时小,说明BFKH550与沥青发生了较强的吸附,从而有效提高了BF与沥青的粘附性能。研究成果可为BF在沥青混合料中的推广应用提供重要参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨程程
柳力
刘朝晖
黄优
刘磊鑫
关键词:  硅烷偶联剂(KH550)  玄武岩纤维(BF)  化学接枝  粘附性能  分子动力学    
Abstract: To enhance the interfacial adhesion property of basalt fiber to asphalt, the basalt fiber surface was modified using the grafted silane coupling agent KH550. The microscopic characterization of KH550 graft-modified basalt fiber was carried out by scanning electron microscopy and infrared spectroscopy, and the interfacial model of asphalt and BFKH550 was established based on the molecular dynamics method using the ‘chemical grafting' and ‘superposition' approaches. The results show that after KH550 graft modification, the surface of basalt fiber has more bumps and roughness, which increases the adhesion strength between basalt fiber and asphalt. The higher the number of KH550 grafted on the basalt fiber surface, the better the adhesion to the asphalt. The interfacial energy of 20 KH550 grafted on the basalt fiber surface at 25 ℃ increased by 26.1% compared to non-grafted KH550. After KH550 graft modification, the diffusion coefficients of the four components of the asphalt follow the same pattern as without KH550 grafting, being saturated saturate > aromatic > resin > asphaltene, but their overall diffusion coefficients are smaller than without KH550 grafting, indicating that stronger adsorption of KH550 graft-modified basalt fiber to the asphalt has occurred, thus effectively improving the adhesion properties of basalt fiber to the asphalt. The results of the study can provide an important reference for the promotion of basalt fiber in asphalt mixture.
Key words:  silane coupling agent KH550    basalt fiber    chemical grafting    adhesion property    molecular dynamics
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  U414  
基金资助: 国家自然科学基金(52208423);湖南省研究生科研创新项目(CX20210733)
通讯作者:  *柳力,长沙理工大学交通运输工程学院副教授、硕士研究生导师。2011年中南林业科技大学本科毕业,获得学士学位,2014年长沙理工大学道路与铁道工程专业硕士毕业,2017年长沙理工大学道路与铁道工程专业博士毕业后到长沙理工大学工作至今。主要从事沥青路面结构和新型路面材料的研究。先后主持国家自然科学基金青年项目1项、国家重点研发项目子课题2项、参与省部级纵向项目10余项。公开发表学术论文50余篇,其中SCI、EI检索论文20余篇,出版专著1部,授权国家发明专利20余项,参编行业规范和地方标准2部。
刘朝晖,长沙理工大学教授、博士研究生导师。1990年长沙交通学院道路工程专业本科毕业,2000年湖南大学建筑与土木工程专业硕士毕业。主要从事路面结构与材料等方面的研究工作。为国家百千万人才工程人选、国家有突出贡献中青年专家,享受国务院政府特殊津贴。公开发表学术论文100余篇,获国家专利20余项,出版专著4部,教材3部。主持和参与完成30余项国家、省部级科研项目,获国家科技进步二等奖2项,省部级特等奖1项、一等奖9项、二三等奖20余项。   
作者简介:  杨程程,2017年6月、2020年6月分别于盐城工学院和长沙理工大学获得工学学士学位和硕士学位。现为长沙理工大学交通运输工程学院博士研究生,在刘朝晖教授指导下进行研究。目前主要研究领域为道路工程新材料。
引用本文:    
杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
YANG Chengcheng, LIU Li, LIU Zhaohui, HUANG You, LIU Leixin. Study on the Adhesion Characteristics of Silane Coupling Agent Modified Basalt Fiber to Asphalt Based on Molecular Dynamics. Materials Reports, 2024, 38(6): 22110027-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22110027  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22110027
1 Zheng J L, Lyu S T, Liu C C. Chinese Science Bulletin, 2020, 65(30), 3219 (in Chinese).
郑健龙, 吕松涛, 刘超超. 科学通报, 2020, 65(30), 3219.
2 Zhang Y J, Luo W B. Materials Reports, 2022, 36(9), 120 (in Chinese).
张永军, 罗文波. 材料导报, 2022, 36(9), 120.
3 Liu L, Liu Z H, Liu J Y. Journal of Materials in Civil Engineering, 2020, 32(4), 04020041. 1.
4 Yang C C, Liu Z H, Liu L, et al. Journal of Highway and Transportation Research and Development, 2020, 37(11), 1 (in Chinese).
杨程程, 刘朝晖, 柳力, 等. 公路交通科技,2020, 37(11), 1.
5 Lou K K, Xiao P, Tang Q, et al. Construction and Building Materials, 2022, 318, 126048.
6 Miao Y H, Wang T, Wang L B. Polymers, 2019, 11(3), 542.
7 Liu L, Liu Z H. Performance study of basalt fiber-reinforced rubber asphalt mixture, China Communication Press, China, 2018(in Chinese).
柳力, 刘朝晖. 玄武岩纤维橡胶沥青混合料性能增强机理与方法, 人民交通出版社, 2018.
8 Zhang J Z, Wang J, Li Y, et al. Materials Reports, 2022, 36(16), 21 (in Chinese).
张吉哲, 王静, 李岩, 等. 材料导报, 2022, 36(16), 21.
9 Zhao X G, Ouyang J, Yang H M, et al. Minerals, 2020, 10(6), 490.
10 Zeng Y, Yu K J, Qian K. Journal of Materials Science and Engineering, 2019, 37(4), 612 (in Chinese).
曾瑶, 俞科静, 钱坤. 材料科学与工程学报, 2019, 37(4), 612.
11 Liu L, Huang Y, Liu Z H. Advances in Civil Engineering, 2020, 2020(4), 1.
12 Kou C J, Chen Z K, Kang A H, et al. Construction And Building Mate-rials, 2022, 323, 126626.
13 Manikandan V, Jappes J T W, Kumar S M S, et al. Composite Part B: Engineering, 2012, 43(2), 812.
14 Siwon Y, Kyung H O, Soon H H. Composites Science and Technology, 2019, 182(29), 1.
15 Antonova M V, Krasina I V, Ilyushina S V. Journal of Physics, 2018(1058), 1.
16 Li L, Liu Z H, Liu L, et al. Acta Materiae Compositae Sinica, 2018, 35(8), 2191 (in Chinese).
李理, 刘朝晖, 柳力, 等. 复合材料学报, 2018, 35(8), 2191.
17 Li W B, Liu L, Liu Z H, et al. Materials Reports, 2022, 36(11), 126 (in Chinese).
李文博, 柳力, 刘朝晖, 等. 材料导报, 2022, 36(11), 126.
18 Geunsung L, Minchang S, Ji H Y, et al. Composite Structures, 2019, 220, 580.
19 Shavandi A, Ali M A. Progress in Organic Coatings, 2019, 130, 182.
20 Bie Y N, Zhu S R, He P, et al. Acta Materiae Compositae Sinica, 2021, 39(8), 1 (in Chinese).
别依诺, 朱四荣, 贺攀, 等. 复合材料学报, 2021, 39(8), 1.
21 Zhou S F, Gao J J, Wang J J, et al. Materials Research Express, 2019, 6, 1.
22 Chen J N, Zhao S P, Hu W H, et al. Science of Advanced Materials, 2019, 11(9), 1340.
23 Liu L, Liu Z H, Xiang Y, et al. Journal of Building Materials, 2017, 20(4), 623(in Chinese).
柳力, 刘朝晖, 向宇, 等. 建筑材料学报, 2017, 20(4), 623.
24 Zhang S C, Zhong T H Y, Xu Q B, et al. Polymer Materials Science & Engineering, 2022, 38(2), 88(in Chinese).
张圣昌, 钟天皓月, 许启彬, 等. 高分子材料科学与工程, 2022, 38(2), 88.
25 Speight J G. The chemistry and technology of petroleum (4th edition), CRC Press, America, 2007, pp. 945.
26 Cao L P, Zhang X K, Yang C, et al. Journal of Central South University (Science and Technology), 2021, 52(7), 2276 (in Chinese).
曹丽萍, 张晓亢, 杨晨, 等. 中南大学学报(自然科学版), 2021, 52(7), 2276.
27 Yao H, Lin J F, Xu M, et al. Advances in Colloid and Interface Science, 2022, 299, 102565.
28 Li Q, Hu K, Yu C H, et al. Materials Reports, 2023, 37(5), 268 (in Chinese).
栗启, 胡魁, 俞才华, 等. 材料导报, 2023, 37(5), 268.
29 Chen X F, Zhang Y S, Huo H B, et al. Journal of Natural Fibers, 2020, 17(2), 214.
30 Xu P. Modeling and analysis of molecular dynamics for characterizing asphalt-aggregate interaction. Master's Thesis, Chang'an University, China, 2013(in Chinese).
徐霈. 基于分子动力学的沥青与集料界面行为虚拟实验研究. 硕士学位论文,长安大学, 2013.
31 Guo M. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate. Ph.D. Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究.博士学位论文, 哈尔滨工业大学, 2017.
32 He L, Li G N, Lv S T, et al. Construction and Building Materials, 2020, 254(10), 119225.
33 Liao R J, Zhu M Z, Zhou X, et al. Acta Physico-Chimica Sinica, 2011, 27(4), 815 (in Chinese).
廖瑞金, 朱孟兆, 周欣, 等. 物理化学学报, 2011, 27(4), 815.
34 Norinaga K, Wargardalam V J, Takasugi S, et al. Energy & Fuels, 2001, 15(5), 1317.
35 Andrews A B, Guerra R E, Mullins O C, et al. The Journal of Physical Chemistry A, 2006, 110(26), 8093.
36 Mousavi M, Fini E. ACS Sustainable Chemistry & Engineering, 2020, 8(8), 3231.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[4] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[5] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[6] 何印章, 熊坤, 张久鹏, 李哲, 李岩. 基于SARA组分调和沥青流变性能、粘附性自愈合性能研究[J]. 材料导报, 2024, 38(22): 24050184-8.
[7] 陈学锋, 云广琨, 吴特伟, 闫力辉, 颜川奇. 温拌沥青胶结料与混合料粘结性能研究[J]. 材料导报, 2024, 38(20): 23040041-7.
[8] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[9] 崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
[10] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[11] 朱雅婧, 徐光霁, 马涛, 范剑伟, 胡靖. 基于有限元和分子模拟的热再生沥青激活行为研究[J]. 材料导报, 2024, 38(13): 22040306-7.
[12] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[13] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[14] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[15] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed