Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23020112-8    https://doi.org/10.11896/cldb.23020112
  无机非金属及其复合材料 |
材料亚表面/表面缺陷锁相红外热成像检测研究现状与趋势
王慧鹏1, 蔡冬威1,2, 董丽虹2,*, 林恩2,3, 王海斗2,4
1 江西理工大学机电工程学院,江西 赣州 341000
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 浙江工业大学机械工程学院,杭州 310023
4 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Status and Development Trend of Lock-in Infrared Thermography Detection of Material Subsurface/Surface Defects
WANG Huipeng1, CAI Dongwei1,2, DONG Lihong2,*, LIN En2,3, WANG Haidou2,4
1 School of Mechanical and Electrical Engineering, Jiangxi University of Technology, Ganzhou 341000, Jiangxi, China
2 National Key Laboratory for Remanufaeturing, Army Academy of Armored Forces, Beijing 100072, China
3 School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
4 National Engineering Research Center for Remanufacture of Mechanical Products, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 5065KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 材料亚表面/表面缺陷的有效检测是确保结构安全性和可靠性的重要保证。锁相红外热成像是主动红外热成像中的一个分支,因具有加热激励功率强度低、对不均匀加热和表面发射率变化不敏感等优点,被广泛用于材料亚表面分层、脱粘等缺陷检测。近年来随着研究的不断深入,锁相红外热成像在表面裂纹检测和深度量化上也提出了有效的表征方法。微小、深埋、不规则等缺陷检测以及非均质材料和复杂结构中的缺陷检测一直是热点和难点问题。国内外学者致力于提出新的缺陷表征方法,并减少噪声、横向热扩散等因素对缺陷检测的影响,提高缺陷定性检测和定量表征能力。本文从缺陷特征提取方法、检测影响因素等角度入手对国内外学者的研究进行总结,总结了锁相红外热成像在材料亚表面和表面缺陷检测的研究进展,并对锁相红外热成像的前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王慧鹏
蔡冬威
董丽虹
林恩
王海斗
关键词:  锁相红外热成像  缺陷检测  亚表面缺陷  表面裂纹    
Abstract: Effective detection of subsurface/surface defects of materials is an important guarantee to ensure the safety and reliability of structures. Lock-in infrared thermography is a branch of active infrared thermography. Because of its advantages of low heating excitation power intensity, insensitive to non-uniform heating and surface emissivity changes, it is widely used in defect detection such as subsurface delamination and debonding of materials. In recent years, with the deepening of research, lock-in infrared thermography has also proposed effective characterization methods for surface crack detection and depth quantification. Defect detection such as small, deep and irregular defects and defect detection in heterogeneous materials and complex structures have always been hot and difficult points in defect detection. Domestic and foreign scholars committed to proposing new defect characterization methods, reducing the influence of noise, transverse thermal diffusion and other factors on defect detection, and improving the ability of qualitative detection and quantitative characterization of defects. In this review, the research of domestic and foreign scholars is summarized from the perspectives of defect characterization extraction methods and detection of influencing factors, and the research of lock-in infrared thermography on the subsurface and surface defect detection of materials is summarized, and the prospect of lock-in infrared thermography is prospected.
Key words:  lock-in thermography    defect detecting    subsurface defect    surface crack
发布日期:  2024-10-12
ZTFLH:  TG115.28  
基金资助: 国家自然科学基金(52175206; 52130509);某类重点项目 (ZD-302-12)
通讯作者:  *董丽虹,通信作者,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员、博士研究生导师。目前主要研究领域为无损检测与再制造寿命预测。发表论文100余篇,其中SCI、EI收录50余篇。lihong.dong@126.com   
作者简介:  王慧鹏,江西理工大学机电工程学院副教授、硕士研究生导师。2006年陆军装甲兵工程学院控制工程系军用光学工程专业本科毕业,2010年陆军装甲兵工程学院材料加工工程专业硕士毕业,2014年陆军装甲兵工程学院材料科学与工程专业博士毕业,2018年到江西理工大学工作至今。目前主要从事表面工程与再制造技术等方面的研究工作。发表论文30余篇,其中SCI、EI收录10余篇。
引用本文:    
王慧鹏, 蔡冬威, 董丽虹, 林恩, 王海斗. 材料亚表面/表面缺陷锁相红外热成像检测研究现状与趋势[J]. 材料导报, 2024, 38(18): 23020112-8.
WANG Huipeng, CAI Dongwei, DONG Lihong, LIN En, WANG Haidou. Research Status and Development Trend of Lock-in Infrared Thermography Detection of Material Subsurface/Surface Defects. Materials Reports, 2024, 38(18): 23020112-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020112  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23020112
1 Qu Z, Jiang P, Zhang W X. Sensors, 2020, 20(14), 3851.
2 Fedala Y, Streza M, Sepulveda F, et al. Journal of Nondestructive Evaluation, 2014, 33(3), 335.
3 An Y K, Kim J M, Sohn H. NDT & E International, 2014, 65, 54.
4 Li Y, Song Y J, Liu C H. Materials Reports, 2022, 36(S1), 184(in Chinese).
李胤, 宋远佳, 刘春华. 材料导报, 2022, 36(S1), 184.
5 Bagavathiappan S, Lahiri B B, Saravanan T, et al. Infrared Physics & Technology, 2013, 60, 35.
6 Zhang J Y, Meng X B, Ma Y C. Infrared Physics & Technology, 2016, 76, 655.
7 Busse G, Wu D, Karpen W. Journal of Applied Physics, 1992, 71(8), 3962.
8 Liu J Y, Dai J M, Wang Y. Infrared and Laser Engineering, 2009, 38(2), 346(in Chinese).
刘俊岩, 戴景民, 王扬. 红外与激光工程, 2009, 38(2), 346.
9 Meola C, Carlomagno G M. Measurement Science and Technology, 2004, 15(9), 27.
10 Wallbrink C, Wade S A, Jones R. Journal of Applied Physics, 2007, 101(10), 4907.
11 Xu Y, Wang Q Y, Luo C C, et al. Laser & Optoelectronics Progress, 2020, 57(6), 202(in Chinese).
许颖, 王青原, 罗聪聪, 等. 激光与光电子学进展, 2020, 57(6), 202.
12 Quek S, Almond D, Nelson L, et al. Measurement Science and Technology, 2005, 16(5), 1223.
13 Chatterjee K, Tuli S, Pickering S G, et al. NDT & E International, 2011, 44(7), 655.
14 Tang Q J, Ji J, Fan W M, et al. Thermal Science, 2022, 26(2), 1105.
15 Ranjit S, Choi M, Kim W. Journal of Mechanical Science and Technology, 2016, 30(3), 1111.
16 Lahiri B B, Bagavathiappan S, Reshmi P R, et al. Infrared Physics & Technology, 2012, 55(2-3), 91.
17 Maierhofer C, Roellig M, Gower M, et al. International Journal of Thermophysics, 2018, 39(5), 61.
18 Liu J Y, Gong J L, Qin L, et al. International Journal of Thermophysics, 2015, 36(5-6), 1259.
19 Liu J Y, Tang Q J, Wang Y. Composites Science and Technology, 2012, 72(11), 1240.
20 Tang Q J, Dai J M, Bu C W, et al. Applied Thermal Engineering, 2016, 107, 463.
21 Silva A R, Vaz M, Leite S R, et al. Russian Journal of Nondestructive Testing, 2019, 55(10), 772.
22 Wu D, Karpen W, Haupt K, et al. Journal De Physique Iv, 1994, 4(C7), 567.
23 Liu J Y, Wang Y, Dai J M. Infrared Physics & Technology, 2010, 53(5), 348.
24 Bento A C, Brown S R, Almond D P, et al. Journal of Materials Science-Materials in Medicine, 1995, 6(6), 335.
25 Lee S, Chung Y, Shrestha R, et al. Applied Sciences-Basel, 2021, 11(17), 7870.
26 Marani R, Palumbo D, Galietti U, et al. In:2017 22nd International Conference on Digital Signal Processing. London, 2017, pp.1.
27 Wang Z, Yang Z W, Tao S J, et al. Infrared and Laser Engineering, 2019, 48(S2), 66(in Chinese).
王震, 杨正伟, 陶胜杰, 等. 红外与激光工程, 2019, 48(S2), 66.
28 Montanini R. Infrared Physics & Technology, 2010, 53(5), 363.
29 Choi M, Kang K, Park J, et al. NDT & E International, 2008, 41(2), 119.
30 Gong J L, Liu J Y, Wang F, et al. Infrared Physics & Technology, 2015, 71, 439.
31 Pickering S G, Almond D P. In:35th Annual Review of Progress in Quantitative Nondestructive Evaluation. Univ Chicago, Chicago, 2008, pp.533.
32 Wang H J, Wang N C, He Z Y, et al. IEEE Transactions on Industrial Informatics, 2019, 15(5), 2938.
33 Chatterjee K, Tuli S. IEEE Transactions on Instrumentation and Measurement, 2012, 61(4), 1079.
34 Zocke C, Langmeier A, Stossel R, et al. Qirt Journal, 2009, 6(1), 63.
35 Liu J Y, Gong J L, Qin L, et al. International Journal of Thermophysics, 2015, 36(5-6), 1226.
36 Zhu P F, Wu D, Wang Y F, et al. Applied Optics, 2022, 61(21), 6134.
37 Liu T, Li Y F, Huang W. Infrared and Laser Engineering, 2012, 41(9), 2304(in Chinese).
刘涛, 李永峰, 黄威. 红外与激光工程, 2012, 41(9), 2304.
38 Dong Y F, Xia C J, Yang J X, et al. IEEE Transactions on Industrial Informatics, 2022, 18(4), 2571.
39 Marani R, Palumbo D, Attolico M, et al. In:IEEE 8th International Workshop on Metrology for AeroSpace. Itay, 2021, pp.226.
40 Benmoussat M S, Guillaume M, Caulier Y, et al. Infrared Physics & Technology, 2013, 61, 68.
41 Song H M, Lim H J, Lee S, et al. NDT & E International, 2015, 74, 94.
42 Streza M, Fedala Y, Roger J P, et al. Measurement Science and Technology, 2013, 24(4), 045602.
43 Pech-May N W, Oleaga A, Mendioroz A, et al. Measurement Science and Technology, 2014, 25(11), 115602.
44 Celorrio R, Omella A J, Mendioroz A, et al. International Journal of Thermophysics, 2015, 36(5-6), 1202.
45 Wang M F, Mandelis A, Melnikov A, et al. Journal of Applied Physics, 2018, 124(20), 205106.
46 Streza M, Dadarlat D, Fedala Y, et al. Review of Scientific Instruments, 2013, 84(7), 074902.
47 Fedala Y, Streza M, Roger J P, et al. Journal of Physics D-Applied Physics, 2014, 47(46), 465501.
48 Beuve S, Qin Z H, Roger J P, et al. Sensors and Actuators A-Physical, 2016, 247, 494.
49 Boue C, Hole S. Quantitative InfraRed Thermography Journal, 2020, 17(4), 223.
50 Colom M, Rodriguez-Aseguinolaza J, Mendioroz A, et al. Materials, 2021, 14(19), 5644.
51 Boue C, Hole S. Measurement Science and Technology, 2017, 28(6), 065901.
52 Boue C, Hole S. Journal of Nondestructive Evaluation, 2022, 41(2), 43.
53 Rodriguez-Aseguinolaza J, Colom M, Gonzalez J, et al. NDT & E International, 2021, 122, 102494.
[1] 杨传礼, 张修庆. 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报, 2022, 36(16): 20070136-9.
[2] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[3] 高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
[4] 王博正, 董丽虹, 王海斗, 康嘉杰, 郭伟, 向明. 激光红外热成像技术在材料缺陷检测中的研究和应用现状[J]. 材料导报, 2020, 34(5): 5127-5132.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed