Research Status and Development Trend of Lock-in Infrared Thermography Detection of Material Subsurface/Surface Defects
WANG Huipeng1, CAI Dongwei1,2, DONG Lihong2,*, LIN En2,3, WANG Haidou2,4
1 School of Mechanical and Electrical Engineering, Jiangxi University of Technology, Ganzhou 341000, Jiangxi, China 2 National Key Laboratory for Remanufaeturing, Army Academy of Armored Forces, Beijing 100072, China 3 School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China 4 National Engineering Research Center for Remanufacture of Mechanical Products, Army Academy of Armored Forces, Beijing 100072, China
Abstract: Effective detection of subsurface/surface defects of materials is an important guarantee to ensure the safety and reliability of structures. Lock-in infrared thermography is a branch of active infrared thermography. Because of its advantages of low heating excitation power intensity, insensitive to non-uniform heating and surface emissivity changes, it is widely used in defect detection such as subsurface delamination and debonding of materials. In recent years, with the deepening of research, lock-in infrared thermography has also proposed effective characterization methods for surface crack detection and depth quantification. Defect detection such as small, deep and irregular defects and defect detection in heterogeneous materials and complex structures have always been hot and difficult points in defect detection. Domestic and foreign scholars committed to proposing new defect characterization methods, reducing the influence of noise, transverse thermal diffusion and other factors on defect detection, and improving the ability of qualitative detection and quantitative characterization of defects. In this review, the research of domestic and foreign scholars is summarized from the perspectives of defect characterization extraction methods and detection of influencing factors, and the research of lock-in infrared thermography on the subsurface and surface defect detection of materials is summarized, and the prospect of lock-in infrared thermography is prospected.
王慧鹏, 蔡冬威, 董丽虹, 林恩, 王海斗. 材料亚表面/表面缺陷锁相红外热成像检测研究现状与趋势[J]. 材料导报, 2024, 38(18): 23020112-8.
WANG Huipeng, CAI Dongwei, DONG Lihong, LIN En, WANG Haidou. Research Status and Development Trend of Lock-in Infrared Thermography Detection of Material Subsurface/Surface Defects. Materials Reports, 2024, 38(18): 23020112-8.
1 Qu Z, Jiang P, Zhang W X. Sensors, 2020, 20(14), 3851. 2 Fedala Y, Streza M, Sepulveda F, et al. Journal of Nondestructive Evaluation, 2014, 33(3), 335. 3 An Y K, Kim J M, Sohn H. NDT & E International, 2014, 65, 54. 4 Li Y, Song Y J, Liu C H. Materials Reports, 2022, 36(S1), 184(in Chinese). 李胤, 宋远佳, 刘春华. 材料导报, 2022, 36(S1), 184. 5 Bagavathiappan S, Lahiri B B, Saravanan T, et al. Infrared Physics & Technology, 2013, 60, 35. 6 Zhang J Y, Meng X B, Ma Y C. Infrared Physics & Technology, 2016, 76, 655. 7 Busse G, Wu D, Karpen W. Journal of Applied Physics, 1992, 71(8), 3962. 8 Liu J Y, Dai J M, Wang Y. Infrared and Laser Engineering, 2009, 38(2), 346(in Chinese). 刘俊岩, 戴景民, 王扬. 红外与激光工程, 2009, 38(2), 346. 9 Meola C, Carlomagno G M. Measurement Science and Technology, 2004, 15(9), 27. 10 Wallbrink C, Wade S A, Jones R. Journal of Applied Physics, 2007, 101(10), 4907. 11 Xu Y, Wang Q Y, Luo C C, et al. Laser & Optoelectronics Progress, 2020, 57(6), 202(in Chinese). 许颖, 王青原, 罗聪聪, 等. 激光与光电子学进展, 2020, 57(6), 202. 12 Quek S, Almond D, Nelson L, et al. Measurement Science and Technology, 2005, 16(5), 1223. 13 Chatterjee K, Tuli S, Pickering S G, et al. NDT & E International, 2011, 44(7), 655. 14 Tang Q J, Ji J, Fan W M, et al. Thermal Science, 2022, 26(2), 1105. 15 Ranjit S, Choi M, Kim W. Journal of Mechanical Science and Technology, 2016, 30(3), 1111. 16 Lahiri B B, Bagavathiappan S, Reshmi P R, et al. Infrared Physics & Technology, 2012, 55(2-3), 91. 17 Maierhofer C, Roellig M, Gower M, et al. International Journal of Thermophysics, 2018, 39(5), 61. 18 Liu J Y, Gong J L, Qin L, et al. International Journal of Thermophysics, 2015, 36(5-6), 1259. 19 Liu J Y, Tang Q J, Wang Y. Composites Science and Technology, 2012, 72(11), 1240. 20 Tang Q J, Dai J M, Bu C W, et al. Applied Thermal Engineering, 2016, 107, 463. 21 Silva A R, Vaz M, Leite S R, et al. Russian Journal of Nondestructive Testing, 2019, 55(10), 772. 22 Wu D, Karpen W, Haupt K, et al. Journal De Physique Iv, 1994, 4(C7), 567. 23 Liu J Y, Wang Y, Dai J M. Infrared Physics & Technology, 2010, 53(5), 348. 24 Bento A C, Brown S R, Almond D P, et al. Journal of Materials Science-Materials in Medicine, 1995, 6(6), 335. 25 Lee S, Chung Y, Shrestha R, et al. Applied Sciences-Basel, 2021, 11(17), 7870. 26 Marani R, Palumbo D, Galietti U, et al. In:2017 22nd International Conference on Digital Signal Processing. London, 2017, pp.1. 27 Wang Z, Yang Z W, Tao S J, et al. Infrared and Laser Engineering, 2019, 48(S2), 66(in Chinese). 王震, 杨正伟, 陶胜杰, 等. 红外与激光工程, 2019, 48(S2), 66. 28 Montanini R. Infrared Physics & Technology, 2010, 53(5), 363. 29 Choi M, Kang K, Park J, et al. NDT & E International, 2008, 41(2), 119. 30 Gong J L, Liu J Y, Wang F, et al. Infrared Physics & Technology, 2015, 71, 439. 31 Pickering S G, Almond D P. In:35th Annual Review of Progress in Quantitative Nondestructive Evaluation. Univ Chicago, Chicago, 2008, pp.533. 32 Wang H J, Wang N C, He Z Y, et al. IEEE Transactions on Industrial Informatics, 2019, 15(5), 2938. 33 Chatterjee K, Tuli S. IEEE Transactions on Instrumentation and Measurement, 2012, 61(4), 1079. 34 Zocke C, Langmeier A, Stossel R, et al. Qirt Journal, 2009, 6(1), 63. 35 Liu J Y, Gong J L, Qin L, et al. International Journal of Thermophysics, 2015, 36(5-6), 1226. 36 Zhu P F, Wu D, Wang Y F, et al. Applied Optics, 2022, 61(21), 6134. 37 Liu T, Li Y F, Huang W. Infrared and Laser Engineering, 2012, 41(9), 2304(in Chinese). 刘涛, 李永峰, 黄威. 红外与激光工程, 2012, 41(9), 2304. 38 Dong Y F, Xia C J, Yang J X, et al. IEEE Transactions on Industrial Informatics, 2022, 18(4), 2571. 39 Marani R, Palumbo D, Attolico M, et al. In:IEEE 8th International Workshop on Metrology for AeroSpace. Itay, 2021, pp.226. 40 Benmoussat M S, Guillaume M, Caulier Y, et al. Infrared Physics & Technology, 2013, 61, 68. 41 Song H M, Lim H J, Lee S, et al. NDT & E International, 2015, 74, 94. 42 Streza M, Fedala Y, Roger J P, et al. Measurement Science and Technology, 2013, 24(4), 045602. 43 Pech-May N W, Oleaga A, Mendioroz A, et al. Measurement Science and Technology, 2014, 25(11), 115602. 44 Celorrio R, Omella A J, Mendioroz A, et al. International Journal of Thermophysics, 2015, 36(5-6), 1202. 45 Wang M F, Mandelis A, Melnikov A, et al. Journal of Applied Physics, 2018, 124(20), 205106. 46 Streza M, Dadarlat D, Fedala Y, et al. Review of Scientific Instruments, 2013, 84(7), 074902. 47 Fedala Y, Streza M, Roger J P, et al. Journal of Physics D-Applied Physics, 2014, 47(46), 465501. 48 Beuve S, Qin Z H, Roger J P, et al. Sensors and Actuators A-Physical, 2016, 247, 494. 49 Boue C, Hole S. Quantitative InfraRed Thermography Journal, 2020, 17(4), 223. 50 Colom M, Rodriguez-Aseguinolaza J, Mendioroz A, et al. Materials, 2021, 14(19), 5644. 51 Boue C, Hole S. Measurement Science and Technology, 2017, 28(6), 065901. 52 Boue C, Hole S. Journal of Nondestructive Evaluation, 2022, 41(2), 43. 53 Rodriguez-Aseguinolaza J, Colom M, Gonzalez J, et al. NDT & E International, 2021, 122, 102494.