Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22100266-7    https://doi.org/10.11896/cldb.22100266
  金属与金属基复合材料 |
Cu对含Ce高强高效无取向硅钢磁性能的影响
李娜1,2, 丁西安3, 王永强2,3,*, 陆勤阳1, 郑成思3
1 安徽工业大学冶金工程学院,安徽 马鞍山 243002
2 安徽工业大学先进金属材料绿色制备与表面技术教育部重点实验室,安徽 马鞍山 243002
3 安徽工业大学材料科学与工程学院,安徽 马鞍山 243002
Effect of Cu on the Magnetic Properties of High Strength and Efficiency Non-oriented Silicon Steel Containing Ce Element
LI Na1,2, DING Xi'an3, WANG Yongqiang2,3,*, LU Qinyang1, ZHENG Chengsi3
1 School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
2 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, Anhui, China
3 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
下载:  全 文 ( PDF ) ( 19576KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无取向硅钢作为新能源汽车电机系统的核心部件材料,要求其磁性能和力学性能同时优异,但两者往往不能兼顾。如何获得强度和磁性能的良好匹配是高性能无取向硅钢需要解决的关键问题之一。对此,本工作通过Cu、Ce合金化研制了高强高效无取向硅钢样品,但是,目前Cu在硅钢中的作用尤其是对磁性能的影响机理尚不十分明确。因此,本工作采用光学显微镜、扫描电镜、背散射电子衍射和透射电镜等方法研究了Cu对含Ce高强高效无取向硅钢磁性能的影响及机理。结果表明,适量Cu的添加在显著提高强度的情况下同时降低高频铁损,较多Cu的添加使磁感降低、铁损升高。这主要是因为,适量的Cu以富Cu相析出,具有尺寸小、分布分散等特点,一方面促使再结晶的发生,提高晶粒均匀性,并且高温再结晶退火过程中Cu以固溶形式存在不会明显阻碍晶粒长大,对磁性能有利;另一方面促使有利织构的产生,抑制不利织构出现,提高磁感,从而在一定程度上抵消富Cu析出相阻碍磁畴转动对磁性能的不利影响。Cu含量较高时,富Cu析出相不仅尺寸较大,而且形态呈长条状或短棒状,恶化了磁性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李娜
丁西安
王永强
陆勤阳
郑成思
关键词:  Cu  高强高效无取向硅钢  组织  织构  磁性能    
Abstract: Magnetic and mechanical property are the two most important properties of non-oriented silicon steel which as the core component material of motor. However, there is often mutually exclusive relationship between mechanical properties and magnetic properties. The one of most key problems for the development of high-performance non-orientated silicon steels is how to obtain the comprehensive properties of high strength, high magnetic induction and low iron loss simultaneously. On the base of our previous works, a kind of high strength and efficiency non-orientated silicon steel was achieved by Cu and Ce alloying.This steel present good magnetic properties and outstanding strength, but the mechanism of Cu in this steel especially on the effect of magnetic properties is not clearly.So, in this work, the effect of Cu element on the magnetic properties of high strength and efficiency non-oriented silicon steel containing Ce was investigated by the methods of optical microscope, scanning electron microscope, electron back-scattered diffraction and transmission electron microscope, etc. The results show that there is reduction of high-frequency iron loss in non-orientated silicon steel with significant high strength by appropriate content of Cu addition. While, magnetic induction was reduced and iron loss was increased when adding more Cu element in steel. Cu-rich precipitates characterized by fine, spherical (ellipsoidal) and dispersed will precipitate in hot-rolled plate with appropriate Cu content. These precipitates will hinder dislocation moving, bring more strain energy and provide more higher driving force of recrystallization nucleation. On one hand, the recrystallization was promoted and grain uniformity was improved. Moreover, the grain growth was not significantly impeded during high temperature recrystallized annealing due to the solid solution of Cu element. These factors are beneficial to the magnetic properties. On the other hand, the formation of favorable textures was promoted and unfavorable textures forming was suppressed, which led to the improvement of magnetic induction and alleviated the negative effect of Cu-rich precipitates on the magnetic properties owing to hindering the rotation of the magnetic domain. When more Cu was added, many, large and rectangular or short rod Cu-rich precipitates were precipitated in experimental steel, naturally deteriorated the magnetic properties.
Key words:  copper    non-oriented silicon steel with high strength and efficiency    microstructures    texture    magnetic properties
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TG142.77  
基金资助: 教育部重点实验室开放基金(GFST2020KF10);国家自然科学基金(51604002)
通讯作者:  *王永强,安徽工业大学材料科学与工程学院教授、博士研究生导师。2006年河北理工大学金属材料工程专业本科毕业,2009年河北理工大学材料加工工程专业硕士毕业,2013年北京科技大学材料科学与工程专业博士毕业。目前主要从事高性能钢铁材料的制备及组织与性能、金属结构材料的强韧化等方面的研究工作。发表论文30余篇,包括Materials Science and Engineering A、Materials Cha-racterization、Philosophical Magazine Letters、《金属学报》等。   
作者简介:  李娜,安徽工业大学材料科学与工程学院副教授、硕士研究生导师。2006年河北理工大学冶金工程专业本科毕业,2009年河北理工大学冶金工程专业硕士毕业,2014年北京科技大学冶金工程专业博士毕业。目前主要从事高效无取向硅钢、炼钢新工艺新技术以及不锈钢局部腐蚀等方面的研究工作。发表论文20余篇,包括Materials Science and Engineering A、ISIJ International、Corrosion Engineering、Science and Technology、《金属学报》等。
引用本文:    
李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
LI Na, DING Xi'an, WANG Yongqiang, LU Qinyang, ZHENG Chengsi. Effect of Cu on the Magnetic Properties of High Strength and Efficiency Non-oriented Silicon Steel Containing Ce Element. Materials Reports, 2024, 38(6): 22100266-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100266  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22100266
1 Zhu Chengyi, Bao Yuankai, Wang Yong, et al. Materials Reports, 2021, 35(23), 8(in Chinese).
朱诚意, 鲍远凯, 汪勇, 等. 材料导报, 2021, 35(23), 8.
2 Yoshihiko O, Kohno M, Honda A. Journal of Magnetism & Magnetic Materials, 2008, 320(20), 2430.
3 Fujimura H, Hirayama R, Wajima K, et al. Nipponn Steel, Tokyo, Japan, 2019, pp,122.
4 Gong J, Luo H W. Journal of Materials Engineering, 2015, 43(6), 102(in Chinese).
龚坚, 罗海文. 材料工程, 2015, 43(6), 102.
5 胡瞻源, 王波, 谢世殊, 等. 中国专利, CN102453838A, 2012.
6 岳重祥, 钱红伟, 吴圣杰, 等. 中国专利, CN114196887A, 2022.
7 张晓明, 段军阳, 王郁倩, 等. 中国专利, CN106435358A, 2017.
8 方烽, 侯迪文, 车尚峰, 等. 中国专利, CN114058963A, 2022.
9 Pan Zhendong, Xiang Li, Zhang Chen, et al. Iron Steel Vanadium Titanium, 2013, 34(4), 78(in Chinese).
潘振东, 项利, 张晨, 等. 钢铁钒钛, 2013, 34(4), 78.
10 罗海文, 黄俊. 中国专利, CN107130169A, 2017.
11 罗海文, 黄俊. 中国专利, CN107746941A, 2018.
12 Wang L T, Zhang L X, Liu N H, et al. Special Steel, 2007, 28(1), 41(in Chinese).
王立涛, 张莉霞, 刘念华, 等. 特殊钢, 2007, 28(1), 41.
13 Kubota T, Fujikura M, Kurosaki Y. J. P. patent, JP2011184787A, 2011.
14 Oda Y, Kono M, Okubo T. J. P. patent, JP2008156737A, 2008.
15 Kono M, Oda Y, Okubo T, et al. J. P. patent, JP2008240104A, 2008.
16 Ichirou T, Hiroshi F, Hirokatsu N, et al. U. S. patent, US7922834B2, 2011.
17 Tanaka I, Yashiki H, Iwamoto S, et al. Materia Japan, 2010, 49(1), 29.
18 有田吉宏, 村上英邦, 牛神义行, 等. 中国专利, CN102007226A, 2011.
19 Takashima M, Kono M, Yamada K. J. P. patent, JP2004315956A, 2004.
20 Kono M, Oda Y, Okubo T. J. P. patent, JP2007186790A, 2007.
21 Massalski T B, Murray J L, Bennett L H, et al. Binary alloy phase diagrams Vol 1, American Society for Metals Press, USA, 1986, pp. 916.
22 Mao W M, Ren H P. Transactions of Metal Heat Treatment, 1999, 20(1), 1(in Chinese).
毛卫民, 任慧平. 金属热处理学报, 1999, 20(1), 1.
23 Urtsev V N, Mirzaev D A, Yakovleva I L, et al. Physics of Metals & Me-tallography, 2008, 105(5), 477.
24 Llewellyn D T. Ironmaking and Steelmaking, 1996, 22(1), 25.
25 Yang C F, Zhang Y Q. Iron and Steel, 2005, 40(4), 62(in Chinese).
杨才富, 张永权. 钢铁, 2005, 40(4), 62.
26 Hidekuni M. U.S. patent, US8097094B2, 2012.
27 Hidekuni M. U.S. patent, US20100158744A1, 2010.
28 Wu M, Zeng Y P. Journal of Magnetism and Magnetic Materials, 2015, 391(12), 96.
29 Wang Y Q, Zhang X M, He Z, et al. Materials Science and Engineering A, 2017, 703, 340.
30 Li N, Xiang L, Qiu S T. Transactions of Materials and Heat Treatment, 2016, 37(6), 89(in Chinese).
李娜, 项利, 仇圣桃. 材料热处理学报, 2016, 37(6), 89.
31 Li N, Lu Q Y, Wang Y Q, et al. Journal of Iron and Steel Research, 2017, 29(7), 570(in Chinese).
李娜, 陆勤阳, 王永强, 等. 钢铁研究学报, 2017, 29(7), 570.
32 Li N, Dai W, Wang Y Q, et al. Iron and Steel, 2018, 53(10), 67(in Chinese).
李娜, 代威, 王永强, 等. 钢铁, 2018, 53(10), 67.
33 Li N, Wang Y Q, Qiu S T, et al. ISIJ International, 2016, 56(7), 1256.
34 Yue E B, Li N. Iron and Steel, 2014, 49(12), 65(in Chinese).
岳尔斌, 李娜. 钢铁, 2014, 49(12), 65.
35 He Z Z. Electrical steel, Metallurgical Industry Press, China, 1997, pp.89(in Chinese).
何忠治. 电工钢(上册), 冶金工业出版社, 1997, pp. 89.
36 Li Z H, Xie S K, Wang G D, et al. Journal of Alloys and Compounds, 2021, 888, 161576.
37 Zhang H M, Zhang C Y, Wu Z W, et al. Heat Treatment of Metals, 2022, 47(5), 76(in Chinese).
张慧敏, 张程远, 吴忠旺, 等. 金属热处理, 2022,47(5), 76.
38 Biao X, Zeng Y, Nan D, et al. Journal of Alloys and Compounds, 2014, 588, 108.
39 Han L L, Maccari F, Souza F I R, et al. Nature, 2022, 608, 310.
40 Han L L, Rao Z Y, Souza F I R, et al. Advanced Materials, 2021, 33, 2102139.
41 Ma Y, Wang Q, Zhou X Y, et al. Advanced Materials, 2021, 33, 2006723.
42 Li Y, Song B, Mao J H, et al. Journal of University of Science and Technology Beijing, 2009, 31(5), 579(in Chinese).
李岩, 宋波, 毛璟红, 等. 北京科技大学学报, 2009, 31(5), 579.
43 Zhang W W, Zhao Z H, Fang J H, et al. Rare Metal Materials and Engineering, 2021, 50(6), 7(in Chinese).
张伟玮, 赵之赫, 方继华, 等. 稀有金属材料与工程, 2021, 50(6), 7.
44 Liu Q D, Li C W, Gu J F, et al. In: The Second National Annual Conference on Low Alloy Steel. Jinan, 2014, pp. 211(in Chinese).
刘庆冬, 李传维, 顾剑锋, 等. 第二届全国低合金钢学术年会. 济南, 2014, pp. 221.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[3] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[4] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[5] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[6] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[7] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[8] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[9] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[10] 黄旭锐, 余喻天, 雷金勇, 郝敬轩, 俞传鑫, 潘军, 杨怡萍, 廖梓豪, 关成志, 王建强. 导电(Cu,Mn)3O4接触层在SOEC阳极侧的应用[J]. 材料导报, 2024, 38(8): 23040278-4.
[11] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[12] 龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
[13] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[14] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[15] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed