Effect of Cu on the Magnetic Properties of High Strength and Efficiency Non-oriented Silicon Steel Containing Ce Element
LI Na1,2, DING Xi'an3, WANG Yongqiang2,3,*, LU Qinyang1, ZHENG Chengsi3
1 School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China 2 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, Anhui, China 3 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
Abstract: Magnetic and mechanical property are the two most important properties of non-oriented silicon steel which as the core component material of motor. However, there is often mutually exclusive relationship between mechanical properties and magnetic properties. The one of most key problems for the development of high-performance non-orientated silicon steels is how to obtain the comprehensive properties of high strength, high magnetic induction and low iron loss simultaneously. On the base of our previous works, a kind of high strength and efficiency non-orientated silicon steel was achieved by Cu and Ce alloying.This steel present good magnetic properties and outstanding strength, but the mechanism of Cu in this steel especially on the effect of magnetic properties is not clearly.So, in this work, the effect of Cu element on the magnetic properties of high strength and efficiency non-oriented silicon steel containing Ce was investigated by the methods of optical microscope, scanning electron microscope, electron back-scattered diffraction and transmission electron microscope, etc. The results show that there is reduction of high-frequency iron loss in non-orientated silicon steel with significant high strength by appropriate content of Cu addition. While, magnetic induction was reduced and iron loss was increased when adding more Cu element in steel. Cu-rich precipitates characterized by fine, spherical (ellipsoidal) and dispersed will precipitate in hot-rolled plate with appropriate Cu content. These precipitates will hinder dislocation moving, bring more strain energy and provide more higher driving force of recrystallization nucleation. On one hand, the recrystallization was promoted and grain uniformity was improved. Moreover, the grain growth was not significantly impeded during high temperature recrystallized annealing due to the solid solution of Cu element. These factors are beneficial to the magnetic properties. On the other hand, the formation of favorable textures was promoted and unfavorable textures forming was suppressed, which led to the improvement of magnetic induction and alleviated the negative effect of Cu-rich precipitates on the magnetic properties owing to hindering the rotation of the magnetic domain. When more Cu was added, many, large and rectangular or short rod Cu-rich precipitates were precipitated in experimental steel, naturally deteriorated the magnetic properties.
通讯作者: *王永强,安徽工业大学材料科学与工程学院教授、博士研究生导师。2006年河北理工大学金属材料工程专业本科毕业,2009年河北理工大学材料加工工程专业硕士毕业,2013年北京科技大学材料科学与工程专业博士毕业。目前主要从事高性能钢铁材料的制备及组织与性能、金属结构材料的强韧化等方面的研究工作。发表论文30余篇,包括Materials Science and Engineering A、Materials Cha-racterization、Philosophical Magazine Letters、《金属学报》等。
作者简介: 李娜,安徽工业大学材料科学与工程学院副教授、硕士研究生导师。2006年河北理工大学冶金工程专业本科毕业,2009年河北理工大学冶金工程专业硕士毕业,2014年北京科技大学冶金工程专业博士毕业。目前主要从事高效无取向硅钢、炼钢新工艺新技术以及不锈钢局部腐蚀等方面的研究工作。发表论文20余篇,包括Materials Science and Engineering A、ISIJ International、Corrosion Engineering、Science and Technology、《金属学报》等。
引用本文:
李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
LI Na, DING Xi'an, WANG Yongqiang, LU Qinyang, ZHENG Chengsi. Effect of Cu on the Magnetic Properties of High Strength and Efficiency Non-oriented Silicon Steel Containing Ce Element. Materials Reports, 2024, 38(6): 22100266-7.
1 Zhu Chengyi, Bao Yuankai, Wang Yong, et al. Materials Reports, 2021, 35(23), 8(in Chinese). 朱诚意, 鲍远凯, 汪勇, 等. 材料导报, 2021, 35(23), 8. 2 Yoshihiko O, Kohno M, Honda A. Journal of Magnetism & Magnetic Materials, 2008, 320(20), 2430. 3 Fujimura H, Hirayama R, Wajima K, et al. Nipponn Steel, Tokyo, Japan, 2019, pp,122. 4 Gong J, Luo H W. Journal of Materials Engineering, 2015, 43(6), 102(in Chinese). 龚坚, 罗海文. 材料工程, 2015, 43(6), 102. 5 胡瞻源, 王波, 谢世殊, 等. 中国专利, CN102453838A, 2012. 6 岳重祥, 钱红伟, 吴圣杰, 等. 中国专利, CN114196887A, 2022. 7 张晓明, 段军阳, 王郁倩, 等. 中国专利, CN106435358A, 2017. 8 方烽, 侯迪文, 车尚峰, 等. 中国专利, CN114058963A, 2022. 9 Pan Zhendong, Xiang Li, Zhang Chen, et al. Iron Steel Vanadium Titanium, 2013, 34(4), 78(in Chinese). 潘振东, 项利, 张晨, 等. 钢铁钒钛, 2013, 34(4), 78. 10 罗海文, 黄俊. 中国专利, CN107130169A, 2017. 11 罗海文, 黄俊. 中国专利, CN107746941A, 2018. 12 Wang L T, Zhang L X, Liu N H, et al. Special Steel, 2007, 28(1), 41(in Chinese). 王立涛, 张莉霞, 刘念华, 等. 特殊钢, 2007, 28(1), 41. 13 Kubota T, Fujikura M, Kurosaki Y. J. P. patent, JP2011184787A, 2011. 14 Oda Y, Kono M, Okubo T. J. P. patent, JP2008156737A, 2008. 15 Kono M, Oda Y, Okubo T, et al. J. P. patent, JP2008240104A, 2008. 16 Ichirou T, Hiroshi F, Hirokatsu N, et al. U. S. patent, US7922834B2, 2011. 17 Tanaka I, Yashiki H, Iwamoto S, et al. Materia Japan, 2010, 49(1), 29. 18 有田吉宏, 村上英邦, 牛神义行, 等. 中国专利, CN102007226A, 2011. 19 Takashima M, Kono M, Yamada K. J. P. patent, JP2004315956A, 2004. 20 Kono M, Oda Y, Okubo T. J. P. patent, JP2007186790A, 2007. 21 Massalski T B, Murray J L, Bennett L H, et al. Binary alloy phase diagrams Vol 1, American Society for Metals Press, USA, 1986, pp. 916. 22 Mao W M, Ren H P. Transactions of Metal Heat Treatment, 1999, 20(1), 1(in Chinese). 毛卫民, 任慧平. 金属热处理学报, 1999, 20(1), 1. 23 Urtsev V N, Mirzaev D A, Yakovleva I L, et al. Physics of Metals & Me-tallography, 2008, 105(5), 477. 24 Llewellyn D T. Ironmaking and Steelmaking, 1996, 22(1), 25. 25 Yang C F, Zhang Y Q. Iron and Steel, 2005, 40(4), 62(in Chinese). 杨才富, 张永权. 钢铁, 2005, 40(4), 62. 26 Hidekuni M. U.S. patent, US8097094B2, 2012. 27 Hidekuni M. U.S. patent, US20100158744A1, 2010. 28 Wu M, Zeng Y P. Journal of Magnetism and Magnetic Materials, 2015, 391(12), 96. 29 Wang Y Q, Zhang X M, He Z, et al. Materials Science and Engineering A, 2017, 703, 340. 30 Li N, Xiang L, Qiu S T. Transactions of Materials and Heat Treatment, 2016, 37(6), 89(in Chinese). 李娜, 项利, 仇圣桃. 材料热处理学报, 2016, 37(6), 89. 31 Li N, Lu Q Y, Wang Y Q, et al. Journal of Iron and Steel Research, 2017, 29(7), 570(in Chinese). 李娜, 陆勤阳, 王永强, 等. 钢铁研究学报, 2017, 29(7), 570. 32 Li N, Dai W, Wang Y Q, et al. Iron and Steel, 2018, 53(10), 67(in Chinese). 李娜, 代威, 王永强, 等. 钢铁, 2018, 53(10), 67. 33 Li N, Wang Y Q, Qiu S T, et al. ISIJ International, 2016, 56(7), 1256. 34 Yue E B, Li N. Iron and Steel, 2014, 49(12), 65(in Chinese). 岳尔斌, 李娜. 钢铁, 2014, 49(12), 65. 35 He Z Z. Electrical steel, Metallurgical Industry Press, China, 1997, pp.89(in Chinese). 何忠治. 电工钢(上册), 冶金工业出版社, 1997, pp. 89. 36 Li Z H, Xie S K, Wang G D, et al. Journal of Alloys and Compounds, 2021, 888, 161576. 37 Zhang H M, Zhang C Y, Wu Z W, et al. Heat Treatment of Metals, 2022, 47(5), 76(in Chinese). 张慧敏, 张程远, 吴忠旺, 等. 金属热处理, 2022,47(5), 76. 38 Biao X, Zeng Y, Nan D, et al. Journal of Alloys and Compounds, 2014, 588, 108. 39 Han L L, Maccari F, Souza F I R, et al. Nature, 2022, 608, 310. 40 Han L L, Rao Z Y, Souza F I R, et al. Advanced Materials, 2021, 33, 2102139. 41 Ma Y, Wang Q, Zhou X Y, et al. Advanced Materials, 2021, 33, 2006723. 42 Li Y, Song B, Mao J H, et al. Journal of University of Science and Technology Beijing, 2009, 31(5), 579(in Chinese). 李岩, 宋波, 毛璟红, 等. 北京科技大学学报, 2009, 31(5), 579. 43 Zhang W W, Zhao Z H, Fang J H, et al. Rare Metal Materials and Engineering, 2021, 50(6), 7(in Chinese). 张伟玮, 赵之赫, 方继华, 等. 稀有金属材料与工程, 2021, 50(6), 7. 44 Liu Q D, Li C W, Gu J F, et al. In: The Second National Annual Conference on Low Alloy Steel. Jinan, 2014, pp. 211(in Chinese). 刘庆冬, 李传维, 顾剑锋, 等. 第二届全国低合金钢学术年会. 济南, 2014, pp. 221.