Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21040249-6    https://doi.org/10.11896/cldb.21040249
  无机非金属及其复合材料 |
电弧熔覆ZrO2颗粒增韧对硅化钼涂层的组织及力学性能的影响
王斌1,2, 孙顺平1,2,*, 王洪金1,2, 李小平1,2, 雷卫宁1,2
1 江苏理工学院,江苏 常州 213001
2 江苏省先进材料设计与增材制造重点实验室,江苏 常州 213001
Effect of Particles Toughening for ZrO2 on Microstructure and Mechanical Properties of Molybdenum Silicide Coating Prepared by Arc Cladding
WANG Bin1,2, SUN Shunping1,2,*, WANG Hongjin1,2, LI Xiaoping1,2, LEI Weining1,2
1 Jiangsu University of Technology, Changzhou 213001,Jiangsu, China
2 Jiangsu Key Laboratory of Advanced Materials Design and Additive Manufacturing, Changzhou 213001,Jiangsu, China
下载:  全 文 ( PDF ) ( 8312KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 MoSi2是一种极具应用前景的难熔金属涂层防护材料,但其室温脆性限制了其工程应用。本工作采用电弧熔覆技术制备MoSi2涂层,运用Sigma500场发射扫描电镜、D8 Advance X射线衍射仪、显微硬度计及Nanovea Tribometer摩擦磨损试验机等研究ZrO2的添加对MoSi2涂层硬度、耐磨性和断裂韧性的影响,分析电弧熔覆后涂层的摩擦磨损机制和断裂韧性增韧机制。结果表明:电弧熔覆制备的涂层的组织形貌主要为胞状树枝晶,纯MoSi2涂层主要由MoSi2和Mo5Si3组成,而添加ZrO2的复合涂层主要由MoSi2、Mo5Si3、t-ZrO2及m-ZrO2组成。添加5%ZrO2、10%ZrO2、20%ZrO2、30%ZrO2(质量分数,下同)后涂层显微硬度分别提高了16.9%、20.8%、17.45%、51.4%。经过断裂韧性计算发现,添加20%ZrO2的MoSi2涂层的断裂韧性最高,约为纯MoSi2涂层的六倍,这是由于ZrO2分散了主裂纹应力,通过诱导裂纹偏转和微裂纹来抑制裂纹扩展。此外,通过摩擦磨损实验发现,添加20%ZrO2后涂层的磨损量稳定,磨损表面平整,耐磨性能优异,其摩擦磨损机制主要是氧化磨损和轻微粘着磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王斌
孙顺平
王洪金
李小平
雷卫宁
关键词:  电弧熔覆  二硅化钼(MoSi2)  氧化锆(ZrO2)  耐磨性  断裂韧性    
Abstract: MoSi2 is a promising protective material for refractory metal coating, but room temperature brittleness limites its engineering application. In this work, the effects of the addition of ZrO2 on the hardness, wear resistance and fracture toughness of MoSi2 coating prepared by arc cladding technology were studied by using Sigma500 field emission scanning electron microscope, D8 advance X-ray diffraction, microhardness tester, Nanovea Tribometer friction and wear tester. And the toughening mechanism, as well as friction and wear mechanism of MoSi2 coating after arc cladding were also analyzed. The results show that the microstructure of the coating prepared by arc cladding is mainly cellular dendrite. The pure MoSi2 coating prepared by arc cladding is mainly composed of MoSi2 and Mo5Si3, while the composite coating with ZrO2 addition is mainly composed of MoSi2, Mo5Si3, t-ZrO2 and m-ZrO2. The microhardness of the composite coating is increased by 16.9%, 20.8%, 17.45% and 51.4% after adding 5%ZrO2, 10%ZrO2, 20%ZrO2 and 30%ZrO2 (mass fraction, the same below), respectively. It is found that the MoSi2 coating with 20%ZrO2 has the highest fracture toughness that is about 6 times higher than that of pure MoSi2 coating, which is attributed to dispersing the stress of the main crack and restraining the crack propagation by inducing crack deflection and microcrack. Moreover, the friction and wear experiments show that the composite coating with 20%ZrO2 has the most stable wear loss and flat wear surface, suggesting its excellent wear resistance. The main friction and wear mechanism is oxidation wear and slight adhesive wear.
Key words:  arc cladding    molybdenum disilicide (MoSi2)    zirconia (ZrO2)    wear resistance    fracture toughness
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TG148  
基金资助: 国家自然科学基金(51401093);江苏省高等学校自然科学研究重大项目(17KJA430006;18KJA430007);江苏理工学院研究生创新实践计划项目(XSJCX20_33)
通讯作者:  * sunshunping@jsut.edu.cn   
作者简介:  王斌,本科毕业于江苏理工学院,现为江苏理工学院硕士研究生。主要研究方向为金属与合金的微结构及性质,目前从事难熔金属防护涂层领域的研究。
孙顺平,江苏理工学院教授。2011年毕业于中南大学材料学专业,获得博士学位。2011年进入江苏理工学院工作至今,主要通过热力学模拟及第一性原理计算相结合的方法研究材料的合金化行为与微观缺陷特征。以第一作者或通讯作者身份发表SCI/EI论文20余篇,以第一发明人授权发明专利4项。
引用本文:    
王斌, 孙顺平, 王洪金, 李小平, 雷卫宁. 电弧熔覆ZrO2颗粒增韧对硅化钼涂层的组织及力学性能的影响[J]. 材料导报, 2022, 36(13): 21040249-6.
WANG Bin, SUN Shunping, WANG Hongjin, LI Xiaoping, LEI Weining. Effect of Particles Toughening for ZrO2 on Microstructure and Mechanical Properties of Molybdenum Silicide Coating Prepared by Arc Cladding. Materials Reports, 2022, 36(13): 21040249-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040249  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21040249
1 Xiao L R, Nie Y C, Zhao X J, et al. Surface Technology, 2020, 49 (8), 203 (in Chinese).
肖来荣, 聂艳春, 赵小军, 等. 表面技术, 2020, 49 (8), 203.
2 Wang C C, Li K Z, He D Y, et al. Ceramics International, 2020, 46(7), 9538.
3 Yue G, Guo X P, Qiao Y Q, et al. Applied Surface Science, 2020, 504, 144477.
4 Sun J, Li T, Zhang G P. Corrosion Science, 2019, 155, 146.
5 Liang H, Peng F, Chen H H, et al. Materials Science & Engineering A, 2018, 711, 389.
6 Wang L, Fu Q G, Zhao F L, et al. Surface & Coatings Technology, 2018, 347, 257.
7 Xiao L R, Xu X Q, Liu S N, et al. Journal of the European Ceramic So-ciety, 2020, 40(10), 3555.
8 Liu L, Zhang H Q, Lei H, et al. Ceramics International, 2020, 46(5), 5993.
9 Wang C, Duan L H, Zhang L Q. Chinese Journal of Engineering, 2019, 41(9), 1168 (in Chinese).
王超, 段立辉, 张来启. 工程科学学报, 2019, 41(9), 1168.
10 Cai Z Y, Shen H T, Liu S N, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(9), 1991 (in Chinese).
蔡圳阳, 沈鸿泰, 刘赛男, 等. 中国有色金属学报, 2020, 30(9), 1991.
11 He H R, Xu J Q, Miao X, et al. Materials Reports A: Review Papers, 2019, 33(10), 3227 (in Chinese).
何浩然, 许俊强, 苗欣, 等. 材料导报:综述篇, 2019, 33(10), 3227.
12 Zhu L, Zhu Y S, Ren X R, et al. Surface & Coatings Technology, 2019, 375, 773.
13 Li X F, Feng J Z, Jiang Y G, et al. Ceramics International, 2018, 44(16), 19143.
14 Yan J, Dong F, Ru H Q, et al. Surface & Coatings Technology, 2018, 339, 91.
15 Song R, Wang K S, Hu P, et al. Materials Reports A: Review Papers, 2016, 30(3), 69 (in Chinese).
宋瑞, 王快社, 胡平, 等. 材料导报:综述篇, 2016, 30(3), 69.
16 Li M C, Zhang P L, Zhuang Q Q, et al. Chinese Journal of Lasers, 2017, 44(12), 79 (in Chinese).
李明川, 张培磊, 庄乔乔, 等. 中国激光, 2017, 44(12), 79.
17 Meng J S, Shi X P, Zhang S J, et al. Surface & Coatings Technology, 2019, 374, 437.
18 Meng J S, Jin G, Shi X P. Applied Surface Science, 2018, 431, 135.
19 Wang J D, Feng P Z, Niu J A, et al. Ceramics International, 2014, 40(10), 16381.
20 Ma J, Li Q, Li J H. Rare Metal Materials and Engineering, 2018, 47(9), 2723 (in Chinese).
马静, 李强, 李建辉. 稀有金属材料与工程, 2018, 47(9), 2723.
21 Hu X P, Yan J H, Zhang H A. China Mechanical Engineering, 2011, 22(12), 1498 (in Chinese).
胡小平, 颜建辉, 张厚安.中国机械工程, 2011, 22(12), 1498.
22 Anstis G R, Chantikul P, Lawn B R, et al. Journal of the American Ceramic Society , 1981, 64, 533.
23 Fukugara M, Yamauchi I. Journal of Materials Science, 1993, 28(17), 425.
24 Zhang G P, Sun J, Fu Q G. Ceramics International, 2020, 46(8), 10058.
25 Ai Y L, Liu C H, Li L Y, et al. Acta Materiae Compositae Sinica, 2010, 27(4), 31 (in Chinese).
艾云龙, 刘长虹, 李玲艳, 等. 复合材料学报, 2010, 27(4), 31.
26 Sun J, Fu Q G, Huo C X, et al. Composites Part B, 2018, 150, 242
[1] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[2] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[3] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[4] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[5] 杜宇航, 丁德渝, 郭宁, 郭胜锋. 高熵合金功能特性研究进展[J]. 材料导报, 2021, 35(17): 17051-17063.
[6] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[7] 刘二伟, 贾文清, 薛飞, 范敏郁, 於旻, 余伟炜. 基于PCVN小试样评估主管道的动态断裂韧性研究[J]. 材料导报, 2020, 34(Z2): 418-422.
[8] 秦建, 龙伟民, 路全彬, 李胜男, 黄俊兰. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析[J]. 材料导报, 2020, 34(Z2): 457-461.
[9] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[10] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[11] 吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
[12] 文立伟, 余坤, 封桥桥, 宦华松. 缝合增强复合材料层合板层间断裂韧性研究[J]. 材料导报, 2020, 34(22): 22162-22166.
[13] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[14] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
[15] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed