Abstract: Porous zirconia materials are equipped with many advanced properties, such as the high specific surface area and extremely low thermal conductivity that is derived from their porous structures, as well as the good biocompatibility and chemical stability coming from the intrinsic pro-perties of zirconia. According to reported literature, the porosity and pore size greatly affect the thermodynamic performance of porous zirconia materials, while the morphology of the pores governs their permeability and capability in thermal shock resistance. Generally, the applications of porous zirconia materials substantially rely on their pore structures, therefore it is of great significance to review the recent fabrication methods that can achieve different types of pores in zirconia. The prevailing fabrication methods for porous zirconia can be classified into three types:physical, chemical and phase separation (combination of the first two methods) methods. In recent years, the different methods to control pore structures have attracted worldwide attention. Basically, each pore-forming approach has its unique controlling mechanics to realize the goal structure of the pores. Typically, the products formed using physical methods are equipped with high mechanical performances, whereas their maximum porosity is quite limited. On the other hand, the chemical pore formation methods can offer high controllability over the micro-structure, but the preparation processes are inclined to generate toxic liquids or gases. Compared with the former two kinds of methods, phase separation can systematically adjust the porosity and micro-structure by designing the precursor reagents, nevertheless, this approach has strict requirement on the solution composition as well as the preparation environment. Although each pore forming method has its own pros and cons, phase separation is gaining more and more research interest for its great advantages in designing and achieving desirable porosity and pore structure. The technical key to conducting this approach is to properly formulate the precursor solution and to match the degrees of phase separation and gelation, in order to freeze the desirable two-phase condition with the gelling process and further acquire the suitable porous ceramic material. In this review, we have concluded diverse fabrication methods for porous zirconia materials, and also have discussed and compared the typical features of the as-produced samples. Based on the reported data, we try to define the current challenges and the corresponding potential solutions in the research field of porous ceramics, which may pave the way for designing and preparing future porous zirconia with more advanced properties.
通讯作者:
*梁帅帅,北京科技大学机械制造及自动化系副教授。2010年7月本科毕业于中国矿业大学电力工程学院,2015年7月在北京航空航天大学航空学院工程力学专业取得博士学位,2015—2017年在清华大学机械工程系进行博士后研究工作。2019—2020年在哈佛大学工程与应用科学学院担任访问学者。主要从事微流控成形制造及机械表面工程研究工作。近年来,作为项目负责人主持国家自然科学基金1项、中国博士后科学基金1项、中央高校科研业务费3项。作为主要项目成员参与国家级课题3项、省部级课题2项、横向合作项目5项。已在国际高水平期刊Small、Journal of the American Ceramic Society、Carbon、Langmuir等上发表SCI论文20余篇。liangss@ustb.edu.cn
1 Liao M Y, Guo C X, Guo W M, et al. International Journal of Hydrogen Energy, 2020, 45(41), 20922. 2 Nagasawa H, Omura T, Asai T, et al. Journal of Membrane Science, 2020, 610, 118210. 3 Bakkar S, Pantawane M V, Gu J J, et al. Ceramics International, 2019, 46(5), 6038. 4 Shahini S, Judge W D, Tam J, et al. Advanced Engineering Materials, 2018, 20(8), 1700941. 5 Presumido P H, Primo A, Vilar V J P, et al. Chemical Engineering Journal, 2020, 127510. 6 Ivanova Y A, Freitas C, Lopes D V, et al. Journal of the European Ceramic Society, 2020, 40(5), 2056. 7 Hu J J. Effect of pore structure on high temperature performance of alumina thermal insulation materials. Master's Thesis, Wuhan University of Science and Technology, China, 2021 (in Chinese). 胡娇娇. 孔结构对氧化铝隔热材料高温性能的影响. 硕士学位论文, 武汉科技大学, 2021. 8 Jiang Q, Zhu Y Z, Chen J W, et al. Journal of the Chinese Ceramic Society, 2013, 41(12), 1632 (in Chinese). 姜迁, 朱瓌之, 陈加伟, 等. 硅酸盐学报, 2013, 41(12), 1632. 9 Su H, Zhang J, Wang H, et al. Journal of the European Ceramic Society, 2012, 32(12), 3137. 10 Chen C, Fan H Y, Xing S Y, et al. Shanghai Metal, 2020, 42(5), 5 (in Chinese). 陈超, 范宏誉, 邢守义, 等. 上海金属, 2020, 42(5), 5. 11 Zhao L, Huang Q, Sun H Y, et al. Key Engineering Materials, 2020, 852, 119. 12 Inui T, Haneda S, Sasaki M, et al. Research in Veterinary Science, 2019, 125, 345. 13 Ahlhelm M, Günther P, Scheithauer U, et al. Journal of the European Ceramic Society, 2016, 36(12), 2883. 14 Kolmakova T V, Buyakova S P, Kulkov S N, et al. IOP Conference Series:Materials Science and Engineering, 2016, 123, 012005. 15 Li J, Wang X, Lin Y, et al. Materials, 2016, 9(4), 218. 16 Hu M L, Lin H, Jiang R D, et al. Clinical Oral Investigations, 2018, 22(5), 2081. 17 Zhao Y, Zhu Z F, He R H, et al. Ceramic, 2008(7), 26 (in Chinese). 赵毅, 朱振峰, 贺瑞华, 等. 陶瓷, 2008(7), 26. 18 Shi Z H, Li K Z, Li H J, et al. Journal of Functional Materials, 2005(12), 1944 ( in Chinese). 石振海, 李克智, 李贺军, 等. 功能材料, 2005(12), 1944. 19 Xue W J. Preparation and properties of porous ceramics with features of eco-friendly and unidirectional aligned pores. Master's Thesis, Tianjin University, China, 2009 (in Chinese). 薛伟江. 环保型直通孔结构多孔陶瓷的制备与性能. 硕士学位论文, 天津大学, 2009. 20 Kultayeva S, Ha J-Hoon, Malik R, et al. Journal of the European Ceramic Society, 2020, 40(4), 996. 21 Bade R, Miyazaki N, Hoshide T, et al. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(8), 1775. 22 Deng Z Y, Ferreira J M F, Tanaka Y, et al. Acta Materialia, 2007, 55(11), 3663. 23 Giorgio Pia, Ulrico Sanna. Applied Thermal Engineering, 2014, 65(1-2), 330. 24 Giorgio Pia, Ulrico Sanna. Construction and Building Materials, 2013, 44, 551. 25 Giorgio Pia, Ludovica Casnedi, Ulrico Sanna. Ceramics International, 2016, 42(5), 5802. 26 Giorgio Pia, Ludovica Casnedi, Ulrico Sanna. Ceramics International, 2015, 41(5), 6350. 27 Shen W, Wang F C, Fan Q B, et al. Applied Mathematical Modelling, 2011, 36(5), 1995. 28 Kingery W D, Klein J D, Mcquarrie M C. Transactions of America Society of Mechanical Engineers, 1958, 80(4), 31. 29 Li C W, Deng N N, Wu L H, et al. Chinese Journal of the Ceramic Society, 219, 47(9), 1214 (in Chinese). 李翠伟, 邓娜娜, 武令豪, 等. 硅酸盐学报, 2019, 47(9), 1214. 30 Bowen W R, Mukhtar H. Journal of Membrane Science, 1996, 112(2), 263. 31 Liu M Z. Preparation of porous mullite-based ceramics and application of oil-in-water separation. Master's Thesis, Qilu University of Technology, China, 2021 (in Chinese). 刘明昭. 莫来石基多孔陶瓷制备及其油水分离应用研究. 硕士学位论文, 齐鲁工业大, 2021. 32 Lei X J. Guangzhou Chemical Industry, 2012(8), 51 (in Chinese). 雷小佳. 广州化工, 2012(8), 51. 33 Li R L. Preparation and properties of pegmatite permeable ceramic brick. Master's Thesis, Dalian University of Technology, China, 2008 (in Chinese). 李如林. 伟晶石陶瓷透水砖的研制与性能研究. 硕士学位论文, 大连理工大学, 2008. 34 Yan W H, Niu Q S, Wang L F, et al. Materials Reports, 2008, 22(S2), 388. 闫文慧, 牛青山, 王立福, 等. 材料导报, 2008, 22(S2), 388. 35 Chen C L, Shen Q, Li J G, et al. Rare Metal Materials and Engineering, 2007, 36(S1), 553 (in Chinese). 陈常连, 沈强, 李俊国, 等. 稀有金属材料与工程, 2007, 36(S1), 553. 36 Yu J Y, Li Q, Li C W, et al. Materials Reports, 2009, 23(24), 88 (in Chinese). 于景媛, 李强, 李春微, 等. 材料导报, 2009, 23(24), 88. 37 Guillaume Jean, Valérie Sciamanna, Maryse Demuynck, et al. Ceramics International, 2014, 40(7), 10197. 38 Sun Z Q. Study on preparation and properties of porous oxide ceramics by controlled sintering. Ph. D. Thesis, University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), China, 2017 (in Chinese). 孙志强. 多孔氧化物陶瓷的可控烧结制备及性能研究. 博士学位论文, 中国科学院大学(中国科学院过程工程研究所), 2017. 39 Li H M, Feng X M, Chu W, et al. China Ceramics, 2014, 50(3), 63 (in Chinese). 李华民, 冯小明, 楚炜, 等. 中国陶瓷, 2014, 50(3), 63. 40 Cao Y, He J H. ChineseJournal of Materials Research, 2009, 23(5), 518 (in Chinese). 曹阳, 贺军辉. 材料研究学报, 2009, 23(5), 518. 41 Nishihara H, Mukai S R, Yamashita D, et al. Chemistry of Materials, 2005, 17(3), 683. 42 Kamyshnaya K S, Khabas T A. IOP Conference Series:Materials Science and Engineering, 2016, 156(1), 012039. 43 Bakkar S, Pantawane M V, Gu J J, et al. Ceramics International, 2020, 46(5), 6038. 44 Changqing Hong, Xinghong Zhang, Jiecai Han, et al. Scripta Materialia, 2009, 60(7), 563. 45 Liu H Y, Liu J C, Zhang P Y, et al. Rare Metal Materials and Engineering, 2007, 36(S1), 590 (in Chinese). 刘海燕, 刘家臣, 张鹏宇, 等. 稀有金属材料与工程, 2007, 36(S1), 590. 46 Wang Q Q, Liu Z D, Yu Y S, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(7), 2267. 王琦琦, 刘作冬, 于永生, 等. 硅酸盐通报, 2020, 39(7), 2267. 47 Zhou G Y. Study on the design, preparation and performance of foamed ceramics with high closed porosity. Master's Thesis, Yantai University, China, 2021 (in Chinese). 周光友. 高闭孔率泡沫陶瓷的设计、制备和性能研究. 硕士学位论文, 烟台大学, 2021. 48 Xu J H. Research on preparation of lightweight ceramic pellets and foamed ceramics using silicon carbide foaming. Master's Thesis, Xi'an University of Architecture and Technology, China, 2021 (in Chinese). 徐继浩. 利用碳化硅发泡制备轻质陶粒及发泡陶瓷的研究. 硕士学位论文, 西安建筑科技大学, 2021. 49 Frisch K, Wood L, Messina P. U. S. patent, US3833386, 1974. 50 Tang X Y, Zhang Z J, Huo W L, et al. Journal of the Chinese Ceramic Society, 2018, 46(6), 772 (in Chinese). 唐欣悦, 张在娟, 霍文龙, 等. 硅酸盐学报, 2018, 46(6), 772. 51 Masaaki Hanao, Hidetaka Hayashi, Akira Kishimoto. Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55(10), 732. 52 Akira Kishimoto, Takahiro Nakagawa, Takashi Teranishi, et al. Mate-rials Science Forum, 2012, 735, 109. 53 Omatele O O, Janney M A, Sitrehlow R A. American Ceramic Society Bulletin, 1991, 70(10), 1641. 54 Albert C Y, Omatete O O, Janney M A, et al. Journal of the American Ceramic Society, 1991, 74(3), 612. 55 Zeng Wenmiao, Gan Xueping, Li Zhiyou, et al. Ceramics International, 2016, 42(10), 11593. 56 Hu L F, Wang C A, Sun C C, et al. Astronautical Materials & Technology, 2010, 40(2), 55 (in Chinese). 胡良发, 汪长安, 孙陈诚, 等. 宇航材料工艺, 2010, 40(2), 55. 57 Lang Y. Study on preparation and properties of fiber reinforcement porous YSZ ceramics. Ph. D. Thesis, Tsinghua University, China, 2014(in Chinese). 郎莹. 纤维增强多孔YSZ陶瓷材料的制备和性能研究. 博士学位论文, 清华大学, 2014. 58 Karl S, Somers A V. U. S. patent, No. 3090094, 1963. 59 Rambo C, Cao J, Sieber H. Materials Chemistry and Physics, 2004, 87(2-3), 345. 60 Ai J P, Zhou G H, Wang Z J, et al. Journal of Chinese Ceramic Society, 2014, 42(6), 714 (in Chinese). 艾建平, 周国红, 王正娟, 等. 硅酸盐学报, 2014, 42(6), 714. 61 Chen J H, Jia J J, Yu F L. China Ceramics, 2017, 53(5), 50 (in Chinese). 陈景华, 贾军军, 于方丽. 中国陶瓷, 2017, 53(5), 50. 62 Chen S B. Study on preparation and properties of porous zirconia ceramics. Master's Thesis, Shandong Institute of Light Industry, China, 2010 (in Chinese). 陈士冰. 多孔氧化锆陶瓷的制备及其性能的研究. 硕士学位论文, 山东轻工业学院, 2010. 63 Huang Z Z, Luo L H, Lu Q, et al. Journal of the Chinese Ceramic Society, 2008, 36(8), 1129 (in Chinese). 黄祖志, 罗凌虹, 卢泉, 等. 硅酸盐学报, 2008, 36(8), 1129. 64 Wang H. China Ceramic Industry, 2006(3), 7 (in Chinese). 王海. 中国陶瓷工业, 2006(3), 7. 65 Atsuya Towata, Manickam Sivakumar, Kyuichi Yasui, et al. Ultrasonics Sonochemistry, 2007, 14(6), 705. 66 Ivanova Y A, Freitas C, Lopes D V, et al. Journal of the European Ceramic Society, 2020, 40(5), 2056. 67 Zhou J, Wang C A. Journal of the American Ceramic Society, 2013, 96(1), 266. 68 Nakanishi K. Journal of Porous Materials, 1997, 4(2), 67. 69 Guo X Z, Zhu W J, Cai X B, et al. Materials & Design, 2015, 83, 314. 70 Ren Q, Wang N, Zhang L, et al. Acta Physica Sinica, 2012, 61(19), 402 (in Chinese). 任群, 王楠, 张莉, 等. 物理学报, 2012, 61(19), 402. 71 Herwig J, Titus J, Kullmann J, et al. ACS Omega, 2018, 3(1), 1201. 72 Liang S S, Jiang L, Jia M, et al. Langmuir the Acs Journal of Surfaces & Colloids, 2016, 32(31), 7882. 73 Man J, Chien S, Liang S S, et al. ChemPhysChem, 2018, 19(16), 1933. 74 Valdespino D, Rojas-George G, Muñoz-Saldaña J, et al. Ceramics International, 2019, 45(12), 14510. 75 Lange R S A, Hekkink J H A, Keizer K, et al. Journal of Non-Crystalline Solids, 1996, 195(3), 203. 76 Zhang Y, Ma N, Wang Y, et al. Journal of the Chinese Ceramic Society, 2016, 44(06), 785. 77 Yan X, Su D, Han S S. Journal of the European Ceramic Society, 2015, 35(2), 443. 78 Song J. Study on the preparation of zirconia-based multi-pore bulk by sol-gel adjoint phase separation. Master's Thesis, Zhejiang University, China, 2016 (in Chinese). 宋杰. 溶胶—凝胶伴随相分离法制备氧化锆基多孔块体的研究. 硕士学位论文, 浙江大学, 2016. 79 Hao G S. Preparation of porous oxide microspheres and lithium-based ceramic spheres by sol-gel method. Master's Thesis, Zhejiang University, China, 2016 (in Chinese). 郝贵松. 溶胶凝胶法制备氧化物多孔微球和锂基陶瓷小球. 硕士学位论文, 浙江大学. 2016. 80 Li W Y, Guo X Z, Zhu Y, et al. Journal of Sol-gel Science and Techno-logy, 2013, 67(3), 639. 81 Xiao Z, Zhu S S, Zhou X D. Paint & Coatings Industry, 2019, 49(10), 1 (in Chinese). 肖芝, 朱帅帅, 周晓东. 涂料工业, 2019, 49(10), 1. 82 Liang S S, Shen L J, Zhou C C, et al. Ceramics International, 2020, 46(9), 14188. 83 Zhang G, Xiao Z W, Qiao G J. Journal of the Chinese Ceramic Society, 2012(5), 729 (in Chinese). 张刚, 肖泽文, 乔冠军. 硅酸盐学报, 2012(5), 729. 84 Shen C G. Preparation of multistage porous hybrid materials by sol-gel phase separation. Master's Thesis, Shenyang University of Technology, China, 2020 (in Chinese). 沈晨光. 溶胶凝胶相分离法制备多级孔杂化材料. 硕士学位论文, 沈阳工业大学, 2020. 85 Zhou Y, Cao X P, Jing W H, et al. Chemical Reaction Engineering and Technology, 2010, 26(6), 544 (in Chinese). 周云, 曹雪萍, 景文珩, 等. 化学反应工程与工艺, 2010, 26(6), 544. 86 Minas C, Carnelli D, Tervoort E, et al. Advanced Materials, 2016, 28(45), 9993. 87 Chen M T, Chen G P, Shi J J, et al. Construction technology, 2017, 46(16), 1292. 陈梦婷, 陈国平, 石建军, 等. 施工技术, 2017, 46(16), 129. 88 Zhang F. Preparation and performances of permeable brick of sintering with sludge and straw powder as pore former. Master's Thesis, Anhui University of Technology, China, 2018 (in Chinese). 张飞. 污泥、秸杆粉为造孔剂的烧结透水砖的制备与性能表征. 硕士学位论文, 安徽工业大学, 2018.