Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21080217-10    https://doi.org/10.11896/cldb.21080217
  无机非金属及其复合材料 |
氧化锆多孔陶瓷制备方法研究进展
于海博, 梁帅帅*, 李疆, 祁斌
北京科技大学机械工程学院,北京 100083
Review:Preparation Methods of Porous Zirconia Ceramics
YU Haibo, LIANG Shuaishuai*, LI Jiang, QI Bin
School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083,China
下载:  全 文 ( PDF ) ( 10141KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氧化锆多孔陶瓷材料结合了多孔材料比表面积大、热导率低的优点和氧化锆陶瓷生物兼容性好、化学稳定性好的优点,近年来在高能量密度电池、生物骨架等领域应用广泛。氧化锆多孔陶瓷的孔隙率、孔径等参数会影响其热力学性能,而孔的开闭会影响其渗透性能、抗热震性能等。每种应用对陶瓷孔结构的要求不同,因此,对多孔陶瓷制备的研究需将孔结构调节作为研究重点。
氧化锆多孔陶瓷的制备方法主要包括物理成孔法、化学成孔法和两者相结合的相分离法。近年来不少学者对孔结构可控的成形方法进行了研究,每种成孔法对孔的结构、孔隙率、孔径等参数的控制方式不同,得到的多孔陶瓷性能也不同。物理成孔法工艺较为简单且产品力学性能较高,但所得材料孔隙率较低;化学成孔法可以对多孔结构进行控制且方法多样,但其工艺控制较困难且过程中会产生有害物质;相分离法可以通过调控前驱体配比等手段,系统地调节孔隙结构,且相分离法普适性强,反应条件温和,样品均匀性好,但对溶液配比、制备条件等变量控制较为严格。三种制备方法各有优劣,其中相分离法因可系统地调节孔尺寸、结构、孔隙率等优势较为明显,从而在氧化锆多孔陶瓷制备工作上得到了广泛关注。相分离法制备多孔陶瓷的技术要点是通过对液相前驱体的配比进行调节,以匹配液相前驱体相分离以及凝胶化的速度,以凝胶方式冻结相分离的状态,从而实现对多孔陶瓷孔结构的控制。
本文总结了氧化锆多孔陶瓷的研究进展,聚焦于各种制备方法及所得氧化锆多孔材料的性能特点,分析了当前氧化锆多孔陶瓷制备及应用面临的主要问题,提出了较具潜力的研究发展方向,以期为孔结构简单可控和环境友好型氧化锆多孔陶瓷制备方法研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于海博
梁帅帅
李疆
祁斌
关键词:  氧化锆  多孔陶瓷  孔结构  成孔法  相分离    
Abstract: Porous zirconia materials are equipped with many advanced properties, such as the high specific surface area and extremely low thermal conductivity that is derived from their porous structures, as well as the good biocompatibility and chemical stability coming from the intrinsic pro-perties of zirconia. According to reported literature, the porosity and pore size greatly affect the thermodynamic performance of porous zirconia materials, while the morphology of the pores governs their permeability and capability in thermal shock resistance. Generally, the applications of porous zirconia materials substantially rely on their pore structures, therefore it is of great significance to review the recent fabrication methods that can achieve different types of pores in zirconia.
The prevailing fabrication methods for porous zirconia can be classified into three types:physical, chemical and phase separation (combination of the first two methods) methods. In recent years, the different methods to control pore structures have attracted worldwide attention. Basically, each pore-forming approach has its unique controlling mechanics to realize the goal structure of the pores. Typically, the products formed using physical methods are equipped with high mechanical performances, whereas their maximum porosity is quite limited. On the other hand, the chemical pore formation methods can offer high controllability over the micro-structure, but the preparation processes are inclined to generate toxic liquids or gases. Compared with the former two kinds of methods, phase separation can systematically adjust the porosity and micro-structure by designing the precursor reagents, nevertheless, this approach has strict requirement on the solution composition as well as the preparation environment. Although each pore forming method has its own pros and cons, phase separation is gaining more and more research interest for its great advantages in designing and achieving desirable porosity and pore structure. The technical key to conducting this approach is to properly formulate the precursor solution and to match the degrees of phase separation and gelation, in order to freeze the desirable two-phase condition with the gelling process and further acquire the suitable porous ceramic material.
In this review, we have concluded diverse fabrication methods for porous zirconia materials, and also have discussed and compared the typical features of the as-produced samples. Based on the reported data, we try to define the current challenges and the corresponding potential solutions in the research field of porous ceramics, which may pave the way for designing and preparing future porous zirconia with more advanced properties.
Key words:  zirconia    porous ceramics    pore structure    pore forming method    phase separation
发布日期:  2023-07-10
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51905033);国家科技重大专项(2017-Ⅶ-0013-0110;J2019-Ⅶ-0015-0155);中央高校基本科研业务费(FRF-GF-20-12B)
通讯作者:  *梁帅帅,北京科技大学机械制造及自动化系副教授。2010年7月本科毕业于中国矿业大学电力工程学院,2015年7月在北京航空航天大学航空学院工程力学专业取得博士学位,2015—2017年在清华大学机械工程系进行博士后研究工作。2019—2020年在哈佛大学工程与应用科学学院担任访问学者。主要从事微流控成形制造及机械表面工程研究工作。近年来,作为项目负责人主持国家自然科学基金1项、中国博士后科学基金1项、中央高校科研业务费3项。作为主要项目成员参与国家级课题3项、省部级课题2项、横向合作项目5项。已在国际高水平期刊Small、Journal of the American Ceramic Society、Carbon、Langmuir等上发表SCI论文20余篇。liangss@ustb.edu.cn   
作者简介:  于海博,2019年6月毕业于太原理工大学,获得工学学士学位。现为北京科技大学机械工程学院硕士研究生,在李疆教授、梁帅帅副教授的指导下进行研究。目前主要研究领域为微流控成形制造及机械表面工程研究。
引用本文:    
于海博, 梁帅帅, 李疆, 祁斌. 氧化锆多孔陶瓷制备方法研究进展[J]. 材料导报, 2023, 37(13): 21080217-10.
YU Haibo, LIANG Shuaishuai, LI Jiang, QI Bin. Review:Preparation Methods of Porous Zirconia Ceramics. Materials Reports, 2023, 37(13): 21080217-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080217  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21080217
1 Liao M Y, Guo C X, Guo W M, et al. International Journal of Hydrogen Energy, 2020, 45(41), 20922.
2 Nagasawa H, Omura T, Asai T, et al. Journal of Membrane Science, 2020, 610, 118210.
3 Bakkar S, Pantawane M V, Gu J J, et al. Ceramics International, 2019, 46(5), 6038.
4 Shahini S, Judge W D, Tam J, et al. Advanced Engineering Materials, 2018, 20(8), 1700941.
5 Presumido P H, Primo A, Vilar V J P, et al. Chemical Engineering Journal, 2020, 127510.
6 Ivanova Y A, Freitas C, Lopes D V, et al. Journal of the European Ceramic Society, 2020, 40(5), 2056.
7 Hu J J. Effect of pore structure on high temperature performance of alumina thermal insulation materials. Master's Thesis, Wuhan University of Science and Technology, China, 2021 (in Chinese).
胡娇娇. 孔结构对氧化铝隔热材料高温性能的影响. 硕士学位论文, 武汉科技大学, 2021.
8 Jiang Q, Zhu Y Z, Chen J W, et al. Journal of the Chinese Ceramic Society, 2013, 41(12), 1632 (in Chinese).
姜迁, 朱瓌之, 陈加伟, 等. 硅酸盐学报, 2013, 41(12), 1632.
9 Su H, Zhang J, Wang H, et al. Journal of the European Ceramic Society, 2012, 32(12), 3137.
10 Chen C, Fan H Y, Xing S Y, et al. Shanghai Metal, 2020, 42(5), 5 (in Chinese).
陈超, 范宏誉, 邢守义, 等. 上海金属, 2020, 42(5), 5.
11 Zhao L, Huang Q, Sun H Y, et al. Key Engineering Materials, 2020, 852, 119.
12 Inui T, Haneda S, Sasaki M, et al. Research in Veterinary Science, 2019, 125, 345.
13 Ahlhelm M, Günther P, Scheithauer U, et al. Journal of the European Ceramic Society, 2016, 36(12), 2883.
14 Kolmakova T V, Buyakova S P, Kulkov S N, et al. IOP Conference Series:Materials Science and Engineering, 2016, 123, 012005.
15 Li J, Wang X, Lin Y, et al. Materials, 2016, 9(4), 218.
16 Hu M L, Lin H, Jiang R D, et al. Clinical Oral Investigations, 2018, 22(5), 2081.
17 Zhao Y, Zhu Z F, He R H, et al. Ceramic, 2008(7), 26 (in Chinese).
赵毅, 朱振峰, 贺瑞华, 等. 陶瓷, 2008(7), 26.
18 Shi Z H, Li K Z, Li H J, et al. Journal of Functional Materials, 2005(12), 1944 ( in Chinese).
石振海, 李克智, 李贺军, 等. 功能材料, 2005(12), 1944.
19 Xue W J. Preparation and properties of porous ceramics with features of eco-friendly and unidirectional aligned pores. Master's Thesis, Tianjin University, China, 2009 (in Chinese).
薛伟江. 环保型直通孔结构多孔陶瓷的制备与性能. 硕士学位论文, 天津大学, 2009.
20 Kultayeva S, Ha J-Hoon, Malik R, et al. Journal of the European Ceramic Society, 2020, 40(4), 996.
21 Bade R, Miyazaki N, Hoshide T, et al. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(8), 1775.
22 Deng Z Y, Ferreira J M F, Tanaka Y, et al. Acta Materialia, 2007, 55(11), 3663.
23 Giorgio Pia, Ulrico Sanna. Applied Thermal Engineering, 2014, 65(1-2), 330.
24 Giorgio Pia, Ulrico Sanna. Construction and Building Materials, 2013, 44, 551.
25 Giorgio Pia, Ludovica Casnedi, Ulrico Sanna. Ceramics International, 2016, 42(5), 5802.
26 Giorgio Pia, Ludovica Casnedi, Ulrico Sanna. Ceramics International, 2015, 41(5), 6350.
27 Shen W, Wang F C, Fan Q B, et al. Applied Mathematical Modelling, 2011, 36(5), 1995.
28 Kingery W D, Klein J D, Mcquarrie M C. Transactions of America Society of Mechanical Engineers, 1958, 80(4), 31.
29 Li C W, Deng N N, Wu L H, et al. Chinese Journal of the Ceramic Society, 219, 47(9), 1214 (in Chinese).
李翠伟, 邓娜娜, 武令豪, 等. 硅酸盐学报, 2019, 47(9), 1214.
30 Bowen W R, Mukhtar H. Journal of Membrane Science, 1996, 112(2), 263.
31 Liu M Z. Preparation of porous mullite-based ceramics and application of oil-in-water separation. Master's Thesis, Qilu University of Technology, China, 2021 (in Chinese).
刘明昭. 莫来石基多孔陶瓷制备及其油水分离应用研究. 硕士学位论文, 齐鲁工业大, 2021.
32 Lei X J. Guangzhou Chemical Industry, 2012(8), 51 (in Chinese).
雷小佳. 广州化工, 2012(8), 51.
33 Li R L. Preparation and properties of pegmatite permeable ceramic brick. Master's Thesis, Dalian University of Technology, China, 2008 (in Chinese).
李如林. 伟晶石陶瓷透水砖的研制与性能研究. 硕士学位论文, 大连理工大学, 2008.
34 Yan W H, Niu Q S, Wang L F, et al. Materials Reports, 2008, 22(S2), 388.
闫文慧, 牛青山, 王立福, 等. 材料导报, 2008, 22(S2), 388.
35 Chen C L, Shen Q, Li J G, et al. Rare Metal Materials and Engineering, 2007, 36(S1), 553 (in Chinese).
陈常连, 沈强, 李俊国, 等. 稀有金属材料与工程, 2007, 36(S1), 553.
36 Yu J Y, Li Q, Li C W, et al. Materials Reports, 2009, 23(24), 88 (in Chinese).
于景媛, 李强, 李春微, 等. 材料导报, 2009, 23(24), 88.
37 Guillaume Jean, Valérie Sciamanna, Maryse Demuynck, et al. Ceramics International, 2014, 40(7), 10197.
38 Sun Z Q. Study on preparation and properties of porous oxide ceramics by controlled sintering. Ph. D. Thesis, University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), China, 2017 (in Chinese).
孙志强. 多孔氧化物陶瓷的可控烧结制备及性能研究. 博士学位论文, 中国科学院大学(中国科学院过程工程研究所), 2017.
39 Li H M, Feng X M, Chu W, et al. China Ceramics, 2014, 50(3), 63 (in Chinese).
李华民, 冯小明, 楚炜, 等. 中国陶瓷, 2014, 50(3), 63.
40 Cao Y, He J H. ChineseJournal of Materials Research, 2009, 23(5), 518 (in Chinese).
曹阳, 贺军辉. 材料研究学报, 2009, 23(5), 518.
41 Nishihara H, Mukai S R, Yamashita D, et al. Chemistry of Materials, 2005, 17(3), 683.
42 Kamyshnaya K S, Khabas T A. IOP Conference Series:Materials Science and Engineering, 2016, 156(1), 012039.
43 Bakkar S, Pantawane M V, Gu J J, et al. Ceramics International, 2020, 46(5), 6038.
44 Changqing Hong, Xinghong Zhang, Jiecai Han, et al. Scripta Materialia, 2009, 60(7), 563.
45 Liu H Y, Liu J C, Zhang P Y, et al. Rare Metal Materials and Engineering, 2007, 36(S1), 590 (in Chinese).
刘海燕, 刘家臣, 张鹏宇, 等. 稀有金属材料与工程, 2007, 36(S1), 590.
46 Wang Q Q, Liu Z D, Yu Y S, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(7), 2267.
王琦琦, 刘作冬, 于永生, 等. 硅酸盐通报, 2020, 39(7), 2267.
47 Zhou G Y. Study on the design, preparation and performance of foamed ceramics with high closed porosity. Master's Thesis, Yantai University, China, 2021 (in Chinese).
周光友. 高闭孔率泡沫陶瓷的设计、制备和性能研究. 硕士学位论文, 烟台大学, 2021.
48 Xu J H. Research on preparation of lightweight ceramic pellets and foamed ceramics using silicon carbide foaming. Master's Thesis, Xi'an University of Architecture and Technology, China, 2021 (in Chinese).
徐继浩. 利用碳化硅发泡制备轻质陶粒及发泡陶瓷的研究. 硕士学位论文, 西安建筑科技大学, 2021.
49 Frisch K, Wood L, Messina P. U. S. patent, US3833386, 1974.
50 Tang X Y, Zhang Z J, Huo W L, et al. Journal of the Chinese Ceramic Society, 2018, 46(6), 772 (in Chinese).
唐欣悦, 张在娟, 霍文龙, 等. 硅酸盐学报, 2018, 46(6), 772.
51 Masaaki Hanao, Hidetaka Hayashi, Akira Kishimoto. Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55(10), 732.
52 Akira Kishimoto, Takahiro Nakagawa, Takashi Teranishi, et al. Mate-rials Science Forum, 2012, 735, 109.
53 Omatele O O, Janney M A, Sitrehlow R A. American Ceramic Society Bulletin, 1991, 70(10), 1641.
54 Albert C Y, Omatete O O, Janney M A, et al. Journal of the American Ceramic Society, 1991, 74(3), 612.
55 Zeng Wenmiao, Gan Xueping, Li Zhiyou, et al. Ceramics International, 2016, 42(10), 11593.
56 Hu L F, Wang C A, Sun C C, et al. Astronautical Materials & Technology, 2010, 40(2), 55 (in Chinese).
胡良发, 汪长安, 孙陈诚, 等. 宇航材料工艺, 2010, 40(2), 55.
57 Lang Y. Study on preparation and properties of fiber reinforcement porous YSZ ceramics. Ph. D. Thesis, Tsinghua University, China, 2014(in Chinese).
郎莹. 纤维增强多孔YSZ陶瓷材料的制备和性能研究. 博士学位论文, 清华大学, 2014.
58 Karl S, Somers A V. U. S. patent, No. 3090094, 1963.
59 Rambo C, Cao J, Sieber H. Materials Chemistry and Physics, 2004, 87(2-3), 345.
60 Ai J P, Zhou G H, Wang Z J, et al. Journal of Chinese Ceramic Society, 2014, 42(6), 714 (in Chinese).
艾建平, 周国红, 王正娟, 等. 硅酸盐学报, 2014, 42(6), 714.
61 Chen J H, Jia J J, Yu F L. China Ceramics, 2017, 53(5), 50 (in Chinese).
陈景华, 贾军军, 于方丽. 中国陶瓷, 2017, 53(5), 50.
62 Chen S B. Study on preparation and properties of porous zirconia ceramics. Master's Thesis, Shandong Institute of Light Industry, China, 2010 (in Chinese).
陈士冰. 多孔氧化锆陶瓷的制备及其性能的研究. 硕士学位论文, 山东轻工业学院, 2010.
63 Huang Z Z, Luo L H, Lu Q, et al. Journal of the Chinese Ceramic Society, 2008, 36(8), 1129 (in Chinese).
黄祖志, 罗凌虹, 卢泉, 等. 硅酸盐学报, 2008, 36(8), 1129.
64 Wang H. China Ceramic Industry, 2006(3), 7 (in Chinese).
王海. 中国陶瓷工业, 2006(3), 7.
65 Atsuya Towata, Manickam Sivakumar, Kyuichi Yasui, et al. Ultrasonics Sonochemistry, 2007, 14(6), 705.
66 Ivanova Y A, Freitas C, Lopes D V, et al. Journal of the European Ceramic Society, 2020, 40(5), 2056.
67 Zhou J, Wang C A. Journal of the American Ceramic Society, 2013, 96(1), 266.
68 Nakanishi K. Journal of Porous Materials, 1997, 4(2), 67.
69 Guo X Z, Zhu W J, Cai X B, et al. Materials & Design, 2015, 83, 314.
70 Ren Q, Wang N, Zhang L, et al. Acta Physica Sinica, 2012, 61(19), 402 (in Chinese).
任群, 王楠, 张莉, 等. 物理学报, 2012, 61(19), 402.
71 Herwig J, Titus J, Kullmann J, et al. ACS Omega, 2018, 3(1), 1201.
72 Liang S S, Jiang L, Jia M, et al. Langmuir the Acs Journal of Surfaces & Colloids, 2016, 32(31), 7882.
73 Man J, Chien S, Liang S S, et al. ChemPhysChem, 2018, 19(16), 1933.
74 Valdespino D, Rojas-George G, Muñoz-Saldaña J, et al. Ceramics International, 2019, 45(12), 14510.
75 Lange R S A, Hekkink J H A, Keizer K, et al. Journal of Non-Crystalline Solids, 1996, 195(3), 203.
76 Zhang Y, Ma N, Wang Y, et al. Journal of the Chinese Ceramic Society, 2016, 44(06), 785.
77 Yan X, Su D, Han S S. Journal of the European Ceramic Society, 2015, 35(2), 443.
78 Song J. Study on the preparation of zirconia-based multi-pore bulk by sol-gel adjoint phase separation. Master's Thesis, Zhejiang University, China, 2016 (in Chinese).
宋杰. 溶胶—凝胶伴随相分离法制备氧化锆基多孔块体的研究. 硕士学位论文, 浙江大学, 2016.
79 Hao G S. Preparation of porous oxide microspheres and lithium-based ceramic spheres by sol-gel method. Master's Thesis, Zhejiang University, China, 2016 (in Chinese).
郝贵松. 溶胶凝胶法制备氧化物多孔微球和锂基陶瓷小球. 硕士学位论文, 浙江大学. 2016.
80 Li W Y, Guo X Z, Zhu Y, et al. Journal of Sol-gel Science and Techno-logy, 2013, 67(3), 639.
81 Xiao Z, Zhu S S, Zhou X D. Paint & Coatings Industry, 2019, 49(10), 1 (in Chinese).
肖芝, 朱帅帅, 周晓东. 涂料工业, 2019, 49(10), 1.
82 Liang S S, Shen L J, Zhou C C, et al. Ceramics International, 2020, 46(9), 14188.
83 Zhang G, Xiao Z W, Qiao G J. Journal of the Chinese Ceramic Society, 2012(5), 729 (in Chinese).
张刚, 肖泽文, 乔冠军. 硅酸盐学报, 2012(5), 729.
84 Shen C G. Preparation of multistage porous hybrid materials by sol-gel phase separation. Master's Thesis, Shenyang University of Technology, China, 2020 (in Chinese).
沈晨光. 溶胶凝胶相分离法制备多级孔杂化材料. 硕士学位论文, 沈阳工业大学, 2020.
85 Zhou Y, Cao X P, Jing W H, et al. Chemical Reaction Engineering and Technology, 2010, 26(6), 544 (in Chinese).
周云, 曹雪萍, 景文珩, 等. 化学反应工程与工艺, 2010, 26(6), 544.
86 Minas C, Carnelli D, Tervoort E, et al. Advanced Materials, 2016, 28(45), 9993.
87 Chen M T, Chen G P, Shi J J, et al. Construction technology, 2017, 46(16), 1292.
陈梦婷, 陈国平, 石建军, 等. 施工技术, 2017, 46(16), 129.
88 Zhang F. Preparation and performances of permeable brick of sintering with sludge and straw powder as pore former. Master's Thesis, Anhui University of Technology, China, 2018 (in Chinese).
张飞. 污泥、秸杆粉为造孔剂的烧结透水砖的制备与性能表征. 硕士学位论文, 安徽工业大学, 2018.
[1] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[2] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[3] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[4] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[5] 徐玲琳, 欧阳军, 杨肯, 徐名凤, 周健. 养护温度对矿渣硫铝酸盐水泥水化的影响机理[J]. 材料导报, 2023, 37(11): 21100065-5.
[6] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[7] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用多孔微球发泡法制备泡沫玻璃及其烧成工艺研究[J]. 材料导报, 2023, 37(1): 21050246-5.
[8] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[9] 余明先, 张景贤. 造孔剂法制备硅藻土基多孔陶瓷及其性能研究[J]. 材料导报, 2022, 36(Z1): 21070121-5.
[10] 戴飞亮, 付子恩, 蒋金博, 涂伟萍. 有机硅(碳)嵌段共聚物的合成及其应用研究进展[J]. 材料导报, 2022, 36(9): 20070144-12.
[11] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[12] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[13] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[14] 贾海林, 项海军, 郭明生, 赵万里, 赵晓举, 张民远, 于水军. 深热井巷热害隔离材料复配体系及性能研究[J]. 材料导报, 2022, 36(20): 21050031-10.
[15] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed