Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21050246-5    https://doi.org/10.11896/cldb.21050246
  无机非金属及其复合材料 |
利用多孔微球发泡法制备泡沫玻璃及其烧成工艺研究
渠亚男1, 谢永江1, 仲新华1, 杨金龙2,*
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
2 清华大学材料学院,新型陶瓷与精细工艺国家重点实验室,北京 100084
Glass Foams Prepared by Porous Microspheres Foaming Method and the Sintering Process Research
QU Yanan1, XIE Yongjiang1, ZHONG Xinhua1, YANG Jinlong2,*
1 Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
2 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 7121KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以废玻璃粉为主要原材料制备多孔微球,利用多孔微球发泡法制备高气孔率的泡沫玻璃,研究了烧成温度、升温速率和保温时间对泡沫玻璃孔结构特征参数的影响,提出了利用多孔微球制备泡沫玻璃的最佳烧成工艺参数。结果表明:当玻璃粉球磨至D50为4 μm左右时,可以制备高气孔率的泡沫玻璃。随着烧成温度的升高,泡沫玻璃的孔径增大,气孔率增加;适当提高升温速率可增加泡沫玻璃的气孔率,降低其体积吸水率;延长保温时间,泡沫玻璃的体积吸水率增加,析晶增多,主要晶相包括SiO2(石英)、SiO2(鳞石英)和Na2Ca3Si6O16(失透石)。利用多孔微球制备泡沫玻璃的最佳烧成温度为700~750 ℃,升温速率为3~5 ℃/min,保温时间为1~2 h。本实验制备的泡沫玻璃具有较高的抗压强度(0.8~2.9 MPa),可用作建筑保温材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
渠亚男
谢永江
仲新华
杨金龙
关键词:  多孔微球  泡沫玻璃  烧成工艺  孔结构  保温材料    
Abstract: Porous microspheres were prepared using waste glass powder as the main raw material, and glass foams with high porosity were prepared by the porous microspheres foaming method. The influence of sintering temperature, heating rate and holding time on the porous structure of glass foams was investigated. The optimum sintering parameters for the preparation of glass foams from porous microspheres were proposed. The results show that glass foams with high porosity can be prepared when the D50 of the glass powder is ground to be about 4 μm. With the increasing of the sintering temperature, the cell size and the porosity increase. With the heating rate increasing in a reasonable range, the porosity increases, and the volumetric water absorption reduces. With the increasing of holding time, the water volumetric absorption and the crystal percentage increase. The main crystalline phases are quartz(SiO2), tridymite(SiO2) and devitrite (Na2Ca3Si6O16). The optimum sintering temperature, heating rate and holding time are 700—750 ℃, 3—5 ℃/min and 1—2 h, respectively. The obtained glass foams with high compressive strength of 0.8—2.9 MPa can be used as building thermal insulation materials.
Key words:  porous microsphere    glass foam    sintering process    pore structure    thermal insulation material
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TU55+1.3  
基金资助: 国家自然科学基金(51908551)
通讯作者:  * 杨金龙,清华大学教授、博士研究生导师。1987年6月毕业于北京理工大学,获得学士学位,1990年6月毕业于中北大学,获得硕士学位,1996年7月毕业于清华大学,获得博士学位。主要从事先进结构陶瓷、保温材料、陶瓷微珠、超轻材料、古陶瓷等方面的研究。已发表学术论文300余篇,获100余项发明专利授权。yangjinlong999@126.com   
作者简介:  渠亚男,2011年6月毕业于东南大学,获得学士学位,2016年6月毕业于清华大学,获得博士学位。现为中国铁道科学研究院集团有限公司副研究员,主要研究领域为建筑材料。
引用本文:    
渠亚男, 谢永江, 仲新华, 杨金龙. 利用多孔微球发泡法制备泡沫玻璃及其烧成工艺研究[J]. 材料导报, 2023, 37(1): 21050246-5.
QU Yanan, XIE Yongjiang, ZHONG Xinhua, YANG Jinlong. Glass Foams Prepared by Porous Microspheres Foaming Method and the Sintering Process Research. Materials Reports, 2023, 37(1): 21050246-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050246  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21050246
1 Scheffler M, Colombo P. Cellular ceramics: structure, manufacturing, properties and applications, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2005.
2 Guo H W, Gao D N, Mo Z X. Production technology of glass foam, Chemical Industry Press, China, 2014(in Chinese).
郭宏伟, 高档妮, 莫祖学. 泡沫玻璃生产技术, 化学工业出版社, 2014.
3 König J, Petersen R R, Yue Y. Ceramics International, 2015, 41(8), 9793.
4 Attila Y, Güden M, Taşdemirci A. Ceramics International, 2013, 39(5), 5869.
5 Bernardo E, Cedro R, Florean M, et al. Ceramics International, 2007, 33(6), 963.
6 Cui S P, Zhang J G, Tian Y L, et al. Advanced Materials Research, 2014, 915-916, 524.
7 Wang H, Feng K, Zhou Y, et al. Materials Letters, 2014, 132, 176.
8 Tang B, Lin J, Qian S, et al. Materials Letters, 2014, 128, 68.
9 Chen B, Wang K, Chen X, et al. Materials Letters, 2012, 79, 263.
10 Qian S, Lin J, Tang B S. Journal of the Chinese Ceramic Society, 2014, 42(1), 108(in Chinese).
钱帅, 林健, 唐保山. 硅酸盐学报, 2014, 42(1), 108.
11 Petersen R R, König J, Smedskjaer M M, et al. Journal of Non-Crystalline Solids, 2014, 400, 1.
12 Petersen R R, König J, Smedskjaer M M, et al. Glass Technology: European Journal of Glass Science and Technology Part A, 2014, 55(1), 1.
13 Fernandes H R, Ferreira D D, Andreola F, et al. Ceramics International, 2014, 40(8), 13371.
14 Fernandes H R, Andreola F, Barbieri L, et al. Ceramics International, 2013, 39(8), 9071.
15 Jang D H, Kim Y W, Song I H, et al. Journal of the American Ceramic Society, 2006, 89(10), 3262.
16 Green D J. Journal of the American Ceramic Society, 1985, 68(7), 403.
17 Ji C, He D, Shen L, et al. Materials Letters, 2014, 119, 60.
[1] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[2] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[3] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[4] 贾海林, 项海军, 郭明生, 赵万里, 赵晓举, 张民远, 于水军. 深热井巷热害隔离材料复配体系及性能研究[J]. 材料导报, 2022, 36(20): 21050031-10.
[5] 赵燕茹, 刘明, 王磊, 王志慧. 碳化高温后普通混凝土抗压强度及孔结构演化规律[J]. 材料导报, 2022, 36(19): 21050152-8.
[6] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[7] 黄薇, 李红强, 官航, 冯海洋, 韦业, 古孜努尔·阿巴白克力, 赖学军, 曾幸荣. 天然木材的功能化及其应用进展[J]. 材料导报, 2022, 36(18): 20090093-7.
[8] 李东, 吴发超, 李瑞, 高彩云. 表面活性剂模板法构筑有序介孔三氧化钨及其光电化学水氧化性能[J]. 材料导报, 2022, 36(13): 21040241-6.
[9] 牛荻涛, 罗扬, 苏丽, 黄大观. 玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析[J]. 材料导报, 2022, 36(13): 20120198-6.
[10] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构[J]. 材料导报, 2022, 36(12): 20100140-9.
[11] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[12] 苏英杰, 高丽娟, 卢振杰, 杨广, 程俊霞, 赵雪飞. 废弃酚醛树脂保温材料基电极材料多孔炭的制备及构效关系[J]. 材料导报, 2022, 36(12): 21030309-7.
[13] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[14] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[15] 贺诚, 李庆超, 周涵, 李东旭. 石膏基地面轻质保温层材料的制备及性能研究[J]. 材料导报, 2021, 35(z2): 236-240.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed