Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21040241-6    https://doi.org/10.11896/cldb.21040241
  无机非金属及其复合材料 |
表面活性剂模板法构筑有序介孔三氧化钨及其光电化学水氧化性能
李东1,2,*, 吴发超3, 李瑞1, 高彩云3,*
1 北方民族大学材料科学与工程学院,银川 750021
2 工业废弃物循环利用及先进材料“国际合作基地”,银川 750021
3 北方民族大学化学与化学工程学院,银川 750021
Architecture of Ordered Mesoporous Tungsten Oxide Using Surfactant as Templates for Photoelectrochemical Water Oxidation
LI Dong1,2,*, WU Fachao3, LI Rui1, GAO Caiyun3,*
1 School of Material Science and Engineering, North Minzu University, Yinchuan 750021, China
2 International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, Yinchuan 750021, China
3 Chemical Science and Engineering College, North Minzu University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 12022KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以三嵌段共聚物F127为模板剂,通过钨粉过氧化钨酸、溶剂挥发诱导自组装法制备了有序介孔三氧化钨(m-WO3),并采用X射线衍射(XRD)、Brunauer-emmett-teller(BET)、透射电镜(TEM)、傅里叶红外光谱(FTIR)、拉曼光谱(Raman)、场发射扫描电子显微镜(FESEM)等方法对其结构、孔隙率、形貌、光谱性质及组成进行表征。结果表明,m-WO3具有二维六方P6mm对称结构;与无孔WO3(5 m2/g)相比,m-WO3的比表面积增加了20倍(105 m2/g)且孔径分布更均一(6.7 nm)。XRD结果表明,m-WO3的结晶度均高于同条件下的WO3。光电化学(PEC)测试结果表明,400 ℃下的m-WO3电极在1.0 V vs.Ag/AgCl偏压作用下,产生了0.88 mA/cm2的饱和光电流,约是同条件下WO3电极(0.27 mA/cm2)的3.3倍。这主要是因为m-WO3的比表面积较大,有效地提高了光生电子和空穴的分离效率,进而显著地增强了m-WO3的PEC活性。此外,m-WO3具有比无孔WO3更稳定的光电催化活性。虽然高温煅烧导致m-WO3的介孔孔道部分坍塌,但是其仍具有较大的比表面积,很好地保持了优越的PEC催化活性,解决了介孔材料结晶度和比表面积之间存在的对立矛盾。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李东
吴发超
李瑞
高彩云
关键词:  介孔结构  软模板  三氧化钨  光电化学  水氧化    
Abstract: Ordered mesoporous WO3 (m-WO3) was prepared from peroxotungstic acid combined with evaporation-induced self-assembly technique, in which F127, a triblock copolymer, was used as template. The mesostructure, morphologies, porosity, spectral properties and composition of m-WO3 were characterized by X-ray diffraction spectrometer (XRD), brunauer-emmett-teller (BET), transmission electron microscope (TEM), fourier transform infrared spectra (FTIR), Raman microspectroscopic (Raman) and field-emission scanning electron microscope (FESEM). The results confirm that m-WO3 exhibites 2D hexagonal P6mm symmetric structure with the specific surface area of 105 m2/g, which is 21 times larger than that of non-porous WO3 (5 m2/g), while the pore size distribution was more uniform (6.7 nm). XRD results show that the crystallinity of m-WO3 samples is higher than that of WO3 samples under the same calcination condition. The photoelectrochemical (PEC) results indicate that m-WO3 calcined at 400 ℃ generates the photoanodic current density of 0.88 mA/cm2 at 1.0 V versus Ag/AgCl, which is 3.3 times higher than that of WO3 electrode (0.27 mA/cm2). It is attributed to the large surface area of m-WO3, which can promote the separation of photogenerated electrons and holes efficiently, and thus significantly enhance the activity of m-WO3. In addition, m-WO3 exhibites more steady photocatalytic activity than non-porous WO3. m-WO3 still maintains superior catalytic activity due to its large specific surface area, despite the partial collapse of the mesostructure at high temperature. It was successful to solve the contradiction between crystallinity and specific surface area of mesoporous materials.
Key words:  mesoporous structure    soft template    WO3    phototelectrochemical    water oxidation
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  O643  
  TB383  
基金资助: 宁夏自然科学基金(2021AAC03170;2019AAC03112); 北方民族大学校级重点科研项目 (2019KJ02)
通讯作者:  * lidong@191228@163.com;caiyunfei_520@163.com   
作者简介:  李东,北方民族大学讲师,2007年7月毕业于齐齐哈尔大学无机非金属材料专业,获得学士学位。2012年9月至2015年3月,在日本新潟大学获得先进材料科学与技术专业工学博士学位。以第一作者在国内外学术期刊上发表论文5篇。主要从事光电/电化学催化,开展对半导体金属氧化物组织、性能控制的机理和应用方面的研究。
高彩云,北方民族大学讲师,2007年7月毕业于齐齐哈尔大学无机非金属材料专业,并获得学士学位。2011年3月至2014年3月,在日本新潟大学获得化学工程与工艺专业工学博士学位。以第一作者在国内外学术期刊上发表论文5篇。主要从事光电/电化学催化方面的研究。
引用本文:    
李东, 吴发超, 李瑞, 高彩云. 表面活性剂模板法构筑有序介孔三氧化钨及其光电化学水氧化性能[J]. 材料导报, 2022, 36(13): 21040241-6.
LI Dong, WU Fachao, LI Rui, GAO Caiyun. Architecture of Ordered Mesoporous Tungsten Oxide Using Surfactant as Templates for Photoelectrochemical Water Oxidation. Materials Reports, 2022, 36(13): 21040241-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040241  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21040241
1 Kudo A, Miseki Y. Chemical Society Reviews, 2009, 38, 253.
2 Huang J, Yue P F, Wang L,et al. Chinese Journal of Catalysis, 2019, 40, 1408.
3 Chandra D,Li D, Saito T, et al. ACS Sustainable Chemistry and Engineering, 2019, 6, 17896.
4 Li D, Chandra D, Takeuchi R, et al. ChemSusChem, 2018, 11, 1151.
5 Yin X, Qiu W X, Li W Z, et al. International Journal of Hydrogen Energy, 2020, 45, 19257.
6 Liu Y H, Kong L N, Guo X,et al. Journal of Physics and Chemistry of Solids, 2021, 149, 109823.
7 Sohani T, Tayyebi A, Hong H, et al. Solar Energy Materials and Solar Cells, 2019, 191, 39.
8 Wang Y D, Tian W, Chen C, et al. Advanced Functional Materials, 2019, 29, 1809036.
9 Li D, Chandra D, Saito K, et al. Nanoscale Research Letter, 2014, 9, 542.
10 Chandra D, Saito K, Yui T, et al. Angewandte Chemie International Edition, 2013, 52, 12606.
11 Li D, Chandra D, Takeuchi R et al. Chemistry-A European Journal, 2017, 23, 6596.
12 Ni T J, Li Q S, Yan Y H, et al. Frontiers in Materials, DOI:10.3389/fmats.2021.649411.
13 Li D, Gao C Y. Journal of Synthetic Crystals, 2020, 49(12), 2350 (in Chinese).
李东, 高彩云.人工晶体学报, 2020, 49(12), 2350.
14 Chandra D, Saito K, Yui T, et al. ACS Sustainable Chemistry and Engineering, 2018, 6, 16838.
15 Ciesla U, Demuth D, Leon R, et al. Journal of the Chemical Society, Chemical Communications, 1994, 11, 317.
16 Yang P D, Zhao D Y, Margolese D I, et al. Nature, 1998, 396, 152.
17 Jiang X, Li W, Guo Y L, et al. Chemical Industry and Engineering Progress, 2019, 38(1), 485 (in Chinese).
姜霞,李雯,郭云龙,等.化工进展, 2019, 38(1), 485.
18 Santato C, Odziemkowski M, Ulmann M, et al. Journal of the American Chemical Society, 2001, 123(43), 10639.
19 Sfaelou S,Pop L C, Monfort O, et al. International Journal of Hydrogen Energy, 2016, 41, 5902.
20 Zhao D Y, Huo Q S, Feng J L, et al. Journal of the American Chemical Society, 1998, 120, 6024.
21 Huang Y, Li K X, Yan L S, et al. Chinese Journal of Catalysis, 2012, 33(2), 308 (in Chinese).
黄燕, 李可心, 颜流水, 等. 催化学报,2012, 33(2), 308.
22 Yoon S H, Kang E, Kim J K,et al. Chemical Communications, 2011, 47, 1021.
23 Qin J W, Cao M H, Li N,et al. Journal of Materials Chemistry A, 2011, 21, 17167.
24 Meng X J, Kimura T, Ohji T. Journal of Materials Chemistry A, 2009, 19, 1894.
25 Zhao D Y, Yang P D, Melosh N, et al. Advanced Materials, 1998, 10, 1380.
26 Wei H, Yan X, Wu S et al. The Journal of Physical Chemistry C, 2012, 116, 25052.
27 Gao J, Luo B, Lin H, et al. Applied Catalysis B: Environmental, 2012, 111-112, 288.
28 Kanan S M, Tripp C P. Current Opinion in Solid State and Materials Science, 2007, 11, 19.
29 Krasovec U O, Vuk A S, Orel B. Electrochimica Acta, 2001, 46, 1921.
30 Ferrari A C, Robertson J. Physical Review B, 2000, 61, 14095.
31 Santato C, Ulmann M, Augustynski J. Journal of Physical Chemistry B, 2001, 105(5), 936.
[1] 梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
[2] 张凯, 高本征, 龚旻, 罗波, 范锦鹏. 软模板法制备六瓣状氧化铝微米片[J]. 材料导报, 2021, 35(z2): 68-71.
[3] 曹诗瑶, 闫小琴. GaAs材料在光电化学电池中的稳定性[J]. 材料导报, 2021, 35(5): 5062-5066.
[4] 于濂清, 杨钱龙, 朱海丰, 段丽杰, 赵兴雨, 王艳坤. 氢还原氢氟酸刻蚀的TiO2纳米薄膜光电化学性能[J]. 材料导报, 2021, 35(20): 20001-20004.
[5] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[6] 谢佳乐, 杨萍萍, 李长明. 稳定高效α-Fe2O3光电化学水分解——合理的材料设计和载流子动力学[J]. 《材料导报》期刊社, 2018, 32(7): 1037-1056.
[7] 赵玉婷, 沈艳飞. 光电化学传感器及其在生物分析中的应用研究进展*[J]. CLDB, 2017, 31(13): 138-145.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed