Please wait a minute...
CLDB  2017, Vol. 31 Issue (13): 138-145    https://doi.org/10.11896/j.issn.1005-023X.2017.013.018
  生物医用材料 |
光电化学传感器及其在生物分析中的应用研究进展*
赵玉婷, 沈艳飞
东南大学医学院,南京 210009
Photoelectrochemical Sensor and Its Application in Bioanalysis: A Review
ZHAO Yuting, SHEN Yanfei
School of Medicine, Southeast University, Nanjing 210009
下载:  全 文 ( PDF ) ( 1646KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光电化学传感器是近年来发展起来的一种基于化学或生物识别过程的分析设备,因具有响应快速、灵敏度高、设备简单、价格低廉且易于微型化等优点,在生命分析和环境分析等领域受到了广泛关注。首先介绍了光电化学传感器的基本原理、分类及用于构建该类传感器的光电活性纳米材料,在此基础上进一步综述了光电化学传感器在生物分析中的应用,如用于DNA检测、免疫传感及酶分析等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵玉婷
沈艳飞
关键词:  光电化学  传感器  纳米复合材料  生物分析    
Abstract: Photoelectrochemical (PEC) sensor is a recently developed analytical device based on the process of chemical or biological recognition, which has the advantage of rapid response, high sensitivity. Moreover, the PEC sensor is simple, cheap and easy to realize miniaturization. As a result, PEC sensors have received intense interest in the fields of biological and environmental analysis. The basic principle, classification of PEC sensors, and the photoelectric active nanomaterials for the fabrication of PEC sensors are reviewed. Finally, the applications of PEC sensors in the fields of bioanalysis such as DNA detection, immunosensing and enzyme analysis are presented.
Key words:  photoelectrochemistry    sensor    nanocomposites    bioanalysis
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB333  
  O657.1  
基金资助: *国家自然科学基金(21675022;21305065)
通讯作者:  沈艳飞:通讯作者,女,1980年生,博士,教授,博士研究生导师,研究方向为光电化学和生命分析 E-mail:Yanfei.Shen@seu.edu.cn   
作者简介:  赵玉婷:女,1982年生,硕士,助理工程师,研究方向为光电化学和生物传感 E-mail:zyt_3_5@163.com
引用本文:    
赵玉婷, 沈艳飞. 光电化学传感器及其在生物分析中的应用研究进展*[J]. CLDB, 2017, 31(13): 138-145.
ZHAO Yuting, SHEN Yanfei. Photoelectrochemical Sensor and Its Application in Bioanalysis: A Review. Materials Reports, 2017, 31(13): 138-145.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.018  或          http://www.mater-rep.com/CN/Y2017/V31/I13/138
1 Sun Bing, Ai Shiyun. Fabrication and application of photoelectrochemical sensor [J]. Prog Chem,2014,26(5):834(in Chinese).
孙兵, 艾仕云. 光电化学传感器的构建及应用 [J]. 化学进展, 2014, 26(5):834.
2 Peter L M. Dynamic aspects of semiconductor photoelectrochemistry [J]. Chem Rev,1990,90(5):753.
3 Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells [J].Chem Rev,2010,110(11):6595.
4 Tada H, Fujishima M, Kobayashi H. Photodeposition of metal sulfide quantum dots on titanium(Ⅳ) dioxide and the applications to solar energy conversion [J]. Chem Soc Rev,2011,40(7):4232.
5 Zhao Weiwei, Ma Zhengyuan, Xu Jingjuan, et al. Progress in photoelectrochemical immunoassay [J]. Chin Sci Bull,2014,59(2):122(in Chinese).
赵伟伟, 马征远, 徐静娟, 等. 光电化学免疫分析研究进展 [J]. 科学通报, 2014, 59(2):122.
6 Zhang Zhaoxia, Zhao Changzhi. Progress of photoelectrochemical analysis and sensors [J]. Chin J Analyt Chem,2013,41(3):436(in Chinese).
张兆霞, 赵常志. 光致电化学分析及其传感器的研究进展[J]. 分析化学, 2013, 41(3):436.
7 Hu C G, Zheng J N, Su X Y, et al. Ultrasensitive all-carbon photoelectrochemical bioprobes for zeptomole immunosensing of tumor markers by an inexpensive visible laser light [J]. Analyt Chem,2013,85 (21):10612.
8 Zhao Weiwei.Study on the photoelectrochemical bioanlysis[D].Nanjing: Nan-jing University,2012(in Chinese).
赵伟伟. 光电化学生物分析法研究 [D]. 南京: 南京大学,2012.
9 Li M T, Meng G W, Huang Q, et al. Improved sensitivity of polychlorinated-biphenyl-orientated porous-ZnO surface photovoltage sensors from chemisorption-formed ZnO-CuPc composites [J]. Scie-ntific Reports,2014,4(3):4284.
10 Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis [J]. Angewandte Chemie-Int Ed,2008,47(40):7602.
11 Hafeman D G, Parce J W, Mcconnell H M. Light-addressable potentiometric sensor for biochemical systems [J]. Science,1988,240 (4856):1182.
12 Zhao W W, Xu J J, Chen H Y. Photoelectrochemical bioanalysis: The state of the art [J]. Chem Soc Rev,2015,44(3):729.
13 Golub E, Pelossof G,Freeman R, et al. Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles [J]. Analyt Chem,2009,81(22):9291.
14 Qian Z, Bai H J, Wang J L, et al. A photoelectrochemical sensor based on CdS-polyamidoamine nano-composite film for cell capture and detection [J]. Biosensors Bioelectron,2010,25(9):2045.
15 Peng Yong, Chen Jixiang, Lu Weimin. Study of nanomaterial′s optical characteristics [J]. J Shaanxi Institute of Technology,2003,19(1):16(in Chinese).
彭勇, 陈季香, 卢为民. 纳米材料的光学特性研究 [J]. 陕西工学院学报, 2003, 19(1):16.
16 Zhu Shidong, Zhou Genshu, Cai Rui, et al. Research of the nano-materials at home and abroad Ⅰ—The structure, specific effects and performance of the nano-materials [J]. Heat Treatment Technol Equip,2010,31(3):1(in Chinese).
朱世东, 周根树, 蔡锐, 等. 纳米材料国内外研究进展Ⅰ——纳米材料的结构、特异效应与性能 [J]. 热处理技术与装备,2010,31(3):1.
17 闫红. 浅谈纳米材料及其应用 [J]. 科技创新与应用,2013(14):54.
18 Li Yujin, Wang Jiusi, Tian Ling. Nano-material′s fundamental specific property, development and the general situation of it′s application [J]. J Gansu Education College:Nat Sci,2003,17(3):54 (in Chinese).
李玉金, 王九思, 田玲. 纳米材料的基本特性及发展和应用概况 [J]. 甘肃教育学院学报:自然科学版,2003,17(3):54.
19 He P A, Xu Y, Fang Y Z. Applications of carbon nanotubes in electrochemical DNA biosensors [J]. Microchim Acta,2006,152(3-4):175.
20 Trojanowicz M. Analytical applications of carbon nanotubes: A review [J]. Trac-Trends Analyt Chem,2006,25(5):480.
21 Liu Y X, Dong X C, Chen P. Biological and chemical sensors based on graphene materials [J]. Chem Soc Rev,2012,41(6):2283.
22 Yoon S H, Lim S, Song Y, et al. KOH activation of carbon nanofibers [J]. Carbon,2004,42(8-9):1723.
23 Yakovleva J, Davidsson R, Lobanova A, et al. Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection [J]. Analyt Chem,2002, 74(13):2994.
24 Tang J, Su B L, Tang D P, et al. Conductive carbon nanoparticles-based electrochemical immunosensor with enhanced sensitivity for alpha-fetoprotein using irregular-shaped gold nanoparticles-labeled enzyme-linked antibodies as signal improvement [J]. Biosensors Bioe-lectron,2010,25(12):2657.
25 Zhang J, Lei J P, Xu C L, et al. Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR [J]. Analyt Chem,2010,82(3):1117.
26 Jin Langping, Halidan·Jumahan, Jiang Zhongying. Photoelectrochemical sensor of gold nano-particle composite and its application [J]. Chem Bioeng,2016,33(1):1(in Chinese).
靳浪平, 哈丽旦·居马汗, 蒋中英. 金纳米复合材料的光电化学传感器及其应用 [J]. 化学与生物工程,2016,33(1):1.
27 Schwarze M,Tress W, Beyer B, et al. Band structure engineering in organic semiconductors [J]. Science,2016,352(6292):1446.
28 Yao Huiqin, Huang Shan, Gan Qianqian. Application of several common nanomaterials in electrochemical biosensors [J]. Chem Sens,2016,36(1):10(in Chinese).
姚惠琴, 黄珊, 甘倩倩. 几种常用的纳米材料在电化学生物传感器中的应用 [J]. 化学传感器,2016,36(1):10.
29 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666.
30 Wang Guangfeng, Zhu Yanhong,Chen Ling, et al. Applications of functional nanomaterials in electrochemical immunosensor [J]. Chin J Analyt Chem,2013,41(4):608(in Chinese).
王广凤, 朱艳红, 陈玲, 等. 功能性纳米材料在电化学免疫传感器中的应用 [J]. 分析化学,2013,41(4):608.
31 Sun Yufeng, Liu Shaobo, Li Huihua, et al. Synthesis of grapheme oxide and its gas sensing properties to NH3 [J]. J Funct Mater,2012,43(6):712(in Chinese).
孙宇峰, 刘少波, 李会华, 等. 氧化石墨烯的制备及其对NH3的敏感特性研究 [J]. 功能材料,2012,43(6):712.
32 Du D, Wang L M, Shao Y Y, et al. Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392) [J].Analyt Chem,2011,83(3):746.
33 Wan Y, Wang Y, Wu J J, et al. Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors [J]. Analyt Chem,2011,83(3):648.
34 Song Qi, Li Xianglong, Hao Long, et al. Synthesis and applications of graphenal polymer [J].Acta Polym Sin,2014(6):737(in Chinese).
宋琪, 李祥龙, 郝龙, 等. 石墨烯化聚合物的合成和应用 [J]. 高分子学报,2014(6):737.
35 Kroto H W, Heath J R, Obrien S C, et al. C-60-buckm insterfullerene [J]. Nature,1985,318(6042):162.
36 Du Youwei, Gu Gang, Zang Wencheng. The structure and preparation of all-carbon molecules(fullerenes) and their derivations [J]. Prog Phys,1995,15(3):233(in Chinese).
都有为, 顾刚, 臧文成. 全碳分子及其衍生物的结构与制备 [J]. 物理学进展,1995,15(3):233.
37 盛根玉. C60分子的发现 [J]. 化学教学,2012(2):68.
38 Tutt L W, Kost A. Optical limiting performance of C-60 and C-70 solutions [J]. Nature,1992,356(6366):225.
39 Shen Y F, Reparaz J S, Wagner M R, et al. Assembly of carbon nanotubes and alkylated fullerenes: Nanocarbon hybrid towards photovoltaic applications [J]. Chem Sci,2011,2(11):2243.
40 Shen Y F, Saeki A, Seki S, et al. Exfoliation of graphene and assembly formation with alkylated-C-60: A nanocarbon hybrid towards photo-energy conversion electrode devices [J]. Adv Opt Mater,2015,3(7):925.
41 Shen Y F, Nakanishi T. Fullerene assemblies toward photo-energy conversions [J]. Phys Chem Chem Phys,2014,16(16):7199.
42 Zhao X, Zhou S, Jiang L P, et al. Graphene-CdS nanocomposites: Facile one-step synthesis and enhanced photoelectrochemical cytosensing [J]. Chemistry,2012,18(16):4974.
43 Fan G C, Han L, Zhang J R, et al. Enhanced photoelectrochemical strategy for ultrasensitive DNA detection based on two different sizes of CdTe quantum dots cosensitized TiO2/CdS∶Mn hybrid structure [J].Analyt Chem,2014,86(21):10877.
44 Zhao M, Fan G C, Chen J J, et al. Highly sensitive and selective photoelectrochemical biosensor for Hg2+ detection based on dual signal amplification by exciton energy transfer coupled with sensitization effect [J]. Analyt Chem,2015,87(24):12340.
45 Zhang X R, Xu Y P, Yang Y Q, et al. A new signal-on photoelectrochemical biosensor based on a graphene/quantum-dot nanocomposite amplified by the dual-quenched effect of bipyridinium relay and AuNPs [J]. Chemistry,2012,18(51):16411.
46 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37.
47 Bai S, Shen X P, Zhu G X, et al. The influence of wrinkling in reduced graphene oxide on their adsorption and catalytic properties [J]. Carbon,2013,60(14):157.
48 Rodenas P, Song T, Sudhagar P, et al. Quantum dot based heterostructures for unassisted photoelectrochemical hydrogen generation[J]. Adv Energy Mater,2013,3(2):176.
49 Han H, Song T, Lee E K, et al. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries[J]. ACS Nano,2012,6(9):8308.
50 Bai J, Zhou B X. Titanium dioxide nanomaterials for sensor applications[J]. Chem Rev,2014,114(19):10131.
51 Huo K F, Gao B, Fu J J, et al. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays[J]. RSC Adv,2014,4(33):17300.
52 Brammer K S, Frandsen C J, Jin S. TiO2 nanotubes for bone rege-neration [J]. Trends Biotechnol,2012,30(6):315.
53 Wang G L, Xu J J, Chen H Y. Dopamine sensitized nanoporous TiO2 film on electrodes: Photoelectrochemical sensing of NADH under visible irradiation [J]. Biosensors Bioelectron,2009,24(8):2494.
54 Tu W W, Dong Y T, Lei J P, et al. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles [J]. Analyt Chem,2010,82(20):8711.
55 Da P M, Li W J, Lin X, et al. Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO2 nanowires [J]. Analyt Chem, 2014,86(13):6633.
56 Tu W W,Lei J P,Wang P,et al. Photoelectrochemistry of free-base-porphyrin functionalized zinc oxide nanoparticles and their applications in biosensing [J] Chemistry—A Eur J,2011,17(34):9440.
57 Wang L L, Fei T, Deng J A, et al. Synthesis of rattle-type SnO2 structures with porous shells [J]. J Mater Chem,2012,22(35):18111.
58 Zhang X R, Zhao Y Q, Li S G, et al. Photoelectrochemical biosensor for detection of adenosine triphosphate in the extracts of cancer cells [J]. Chem Commun,2010,46(48):9173.
59 Tang J, Kong B, Wang Y C, et al. Photoelectrochemical detection of glutathione by IrO2-Hemin-TiO2 nanowire arrays [J]. Nano Lett,2013,13(11):5350.
60 Wang Y C, Tang J, Peng Z, et al. Fully solar-powered photoelectrochemical conversion for simultaneous energy storage and chemical sensing [J]. Nano Lett,2014,14(6):3668.
61 Zhang X M, Huo K F, Peng X, et al. WO3 nanoparticles decorated core-shell TiC-C nanofiber arrays for high sensitive and non-enzymatic photoelectrochemical biosensing [J]. Chem Commun,2013,49(63):7091.
62 Sun G Q, Zhang Y, Hong Q K, et al. CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink [J]. Biosensors Bioelectron,2015,66:565.
63 Devadoss A, Sudhagar P, Terashima C, et al. Photoelectrochemical biosensors:New insights into promisingphotoelectrodes and signal amplification strategies [J]. J Photochem Photobiol C,2015,24(3):43.
64 Zhao W W, Xu J J, Chen X Y. Photoelectrochemical DNA biosensors [J].Chem Rev,2014,114(15):7421.
65 Labuda J, Brett A M O, Evtugyn G, et al. Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC technical report) [J]. Pure Appl Chem,2010,82(5):1161.
66 Lu W, Wang G, Jin Y, et al. Label-free photoelectrochemical stra-tegy for hairpin DNA hybridization detection on titanium dioxide electrode [J]. Appl Phys Lett,2006,89(26):263902.
67 Lu W, Jin Y, Wang G, et al. Enhanced photoelectrochemical me-thod for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode [J]. Biosensors Bioelectron,2008,23(10):1534.
68 Liang M M, Jia S P, Zhu S C, et al. Photoelectrochemical sensor for the rapid detection of in situ DNA damage induced by enzyme-catalyzed fenton reaction [J]. Environ Sci Technol,2008,42(2):635.
69 Wu Y P, Zhang B T, Guo L H. Label-free and selective photoelectrochemical detection of chemical DNA methylation damage using DNA repair enzymes [J]. Analyt Chem,2013,85(14):6908.
70 Yan K, Wang R, Zhang J D. A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode [J]. Biosensors Bioelectron,2014,53(9):301.
71 Yin H S, Wang M, Zhou Y L, et al. Photoelectrochemical biosen-sing platform for microRNA detection based on in situ producing electron donor from apoferritin-encapsulated ascorbic acid [J].Biosensors Bioelectron,2014,53(4):175.
72 Haddour N, Cosnier S, Gondran C. Electrogeneration of a biotinylated poly(pyrrole-ruthenium(Ⅱ)) film for the construction of photoelectrochemical immunosensor [J]. Chem Commun,2004,10(21):2472.
73 Shu J, Qiu Z L, Zhou Q, et al. Enzymatic oxydate-triggered self-illuminated photoelectrochemical sensing platform for portable immunoassay using digital multimeter [J]. Analyt Chem,2016,88(5):2958.
74 Clark L C, Lyons C.Electrode systems for continuous monitoring in cardiovascular surgery [J]. Annals New York Academy Sci,1962,102(1):29.
75 Zhao W W, Yu P P, Xu J J, et al. Ultrasensitive photoelectrochemical biosensing based on biocatalytic deposition [J]. Electrochem Commun,2011,13(5):495.
76 Zhao W W, Shan S, Ma Z Y, et al. Acetylcholine esterase antibo-dies on BiOI nanoflakes/TiO2 nanoparticles electrode: A case of application for general photoelectrochemical enzymatic analysis [J].Analyt Chem,2013,85(24):11686.
77 Pardo-Yissar V, Katz E, Wasserman J, et al. Acetylcholine este-rase-labeled CdS nanoparticles on electrodes: Photoelectrochemical sensing of the enzyme inhibitors [J]. J Am Chem Soc,2003,125(3):622.
78 Wang Guangli, Xu Jingjuan, Chen Hongyuan. Progress in the stu-dies of photoelectrochemical sensors [J]. Sci China Series B: Chem,2009,39(11):1336(in Chinese).
王光丽, 徐静娟, 陈洪渊. 光电化学传感器的研究进展 [J]. 中国科学B辑: 化学,2009,39(11):1336.
79 Zhang X, Li S, Jin X, et al. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers [J]. Chem Commun,2011,47(17):4929.
80 Hu Y, Xue Z, He H, et al. Photoelectrochemical sensing for hydroquinone based on porphyrin-functionalized Au nanoparticles on graphene [J]. Biosensors Bioelectron,2013,47:45.
81 Yan K, Liu Y, Yang Y H, et al. A cathodic “signal-off” photoelectrochemical aptasensor for ultrasensitive and selective detection of oxytetracycline [J]. Analyt Chem,2015,87(24):12215.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[3] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[4] 翟培卓, 薛松柏, 陈涛, 孙子建, 陈卫中, 郭佩佩. 焊缝跟踪过程传感与信号处理技术的研究进展[J]. 材料导报, 2019, 33(7): 1079-1088.
[5] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[6] 高党鸽, 王平平, 吕斌, 马建中. POSS/聚合物纳米复合材料制备方法的研究进展[J]. 材料导报, 2019, 33(3): 550-557.
[7] 秦博, 付晓刚, 马浩然, 张金权, 任丽霞, 龙斌. 铅铋合金气相氧含量控制初步实验研究[J]. 材料导报, 2019, 33(11): 1821-1824.
[8] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[9] 谢佳乐, 杨萍萍, 李长明. 稳定高效α-Fe2O3光电化学水分解——合理的材料设计和载流子动力学[J]. 《材料导报》期刊社, 2018, 32(7): 1037-1056.
[10] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[11] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[12] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[13] 张旺玺, 王艳芝, 梁宝岩, 李启泉, 罗伟, 孙长红, 成晓哲, 孙玉周. 纳米金刚石基于功能材料应用的研究现状[J]. 《材料导报》期刊社, 2018, 32(13): 2183-2188.
[14] 陈明鹏, 张裕敏, 张瑾, 柳清菊. 苯系物(BTEX)检测气敏材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2278-2287.
[15] 李超, 马成章, 黄绍军, 闵春刚, 黄秋玲, 孙晓东. 含1,3,4-噻二唑环聚合物的合成及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1891-1902.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed