Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21010061-6    https://doi.org/10.11896/cldb.21010061
  无机非金属及其复合材料 |
基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器
梁旭1, 韩露1, 雷雅京1, 黎雯1, 黄瑞滨2, 陈荣生1, 倪红卫1, 詹玮婷1,*
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,武汉 430081
2 南昌大学第一附属医院,南昌 330006
Non-enzymatic Glucose Sensor Based on Graphene Oxide/ZnO Nanoarrays
LIANG Xu1, HAN Lu1, LEI Yajing1, LI Wen1, HUANG Ruibin2, CHEN Rongsheng1, NI Hongwei1, ZHAN Weiting1,*
1 The State Key Laboratory for Refractories and Metallurgy, Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
2 The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
下载:  全 文 ( PDF ) ( 8901KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用微波水热合成法在不锈钢表面制备氧化石墨烯/ZnO纳米棒阵列(GO/ZnO NRs)作为无酶葡萄糖传感器电极。通过扫描电子显微镜、X射线衍射仪、透射电子显微镜等对电极进行形貌、组织和结构的表征,并通过电化学工作站在有光和无光条件下对电极进行了电流-时间(I-t)曲线测试,分析了在不同氧化石墨烯(GO)沉积条件下GO/ZnO NRs的光电化学性能,在无酶条件下对电极进行光电化学葡萄糖传感测试。结果表明,GO的添加使得ZnO无序的纳米颗粒/棒形貌转变为定向生长的一维阵列,并随着GO的全程添加,ZnO(200)晶面的垂直堆积被抑制,(100)晶面和(101)晶面逐渐堆积,从而使ZnO纳米棒的形貌从原有的尖头生长成平头形。所得GO/ZnO NRs对葡萄糖具有较高的检测灵敏度、较低的检测限和良好的检测范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁旭
韩露
雷雅京
黎雯
黄瑞滨
陈荣生
倪红卫
詹玮婷
关键词:  ZnO纳米棒阵列  氧化石墨烯  无酶葡萄糖传感器  不锈钢  光电化学传感    
Abstract: Graphene oxide/ZnO nanorod arrays (GO/ZnO NRs) were prepared on the surface of stainless steel by microwave hydrothermal synthesis as an enzyme-free glucose sensor electrode. The morphology, organization and structure of the electrode were characterized by scanning electron microscope, X-ray diffractometer, transmission electron microscope, etc., and the electrode was subjected to current-time (I-t) through electrochemical workstation under light and non-light conditions. I-t curve tests were used to analyzed the photoelectrochemical performance of GO/ZnO NRs under different graphene oxide (GO) deposition conditions, and photoelectrochemical glucose sensing tests were performed on the electrode under enzyme-free conditions. The results show that the addition of GO transform the disordered nanoparticle/rod morphology of ZnO into an one-dimensional array of directional growth. With the increase of GO content, the vertical accumulation of ZnO(200) crystal planes is suppressed, while the crystal planes (100) and ( 101) are gradually accumulated. Thus, the morphology of ZnO NRs grow from the original sharp tip to a flat tip. The obtained GO/ZnO NRs have high detection sensitivity for glucose, low detection limit and good detection range.
Key words:  ZnO nanorod array    graphene oxide    non-enzymatic glucose sensor    stainless steel    photoelectrochemical sensor
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  Q657.1  
  S951.4+2  
基金资助: 国家自然科学基金青年科学基金项目(51601136);中国博士后科学基金特别资助项目(2015T80842);武汉科技大学大学生创新创业训练计划项目(S201910488003;20ZA016)
通讯作者:  * zhanwt@wust.edu.cn   
作者简介:  梁旭,2018年6月毕业于济南大学,获得工程学士学位。同年进入武汉科技大学学习至今,主要从事ZnO和CuO纳米材料领域的研究。
詹玮婷,武汉科技大学副教授。武汉科技大学本硕博连读,2012年获得材料与冶金博士学位。2013年7月加入武汉科技大学省部共建耐火材料与冶金国家重点实验室工作至今,多年来从事纳米结构的设计与构筑、多功能高效抗菌材料、光催化纳米材料合成和生物功能化研究等方面的工作。发表相关的学术论文30余篇,被Electrochemistry Communications、Applied Surface Science、Journal of the Electrochemical Society、Ceramics International、Journal of Materials Science、《功能材料》等国内外重要学术期刊收录,申请国家发明专利8项,已授权7项。
引用本文:    
梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
LIANG Xu, HAN Lu, LEI Yajing, LI Wen, HUANG Ruibin, CHEN Rongsheng, NI Hongwei, ZHAN Weiting. Non-enzymatic Glucose Sensor Based on Graphene Oxide/ZnO Nanoarrays. Materials Reports, 2022, 36(13): 21010061-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010061  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21010061
1 Ahmad R, Ahn M S, Hahn Y B. Electrochemistry Communications, 2017, 77, 107.
2 Zhou F, Jing W, Xu Y, et al. Sensors and Actuators B: Chemical, 2019, 284, 377.
3 Chen H J, Zhu J J, Yu M. Chinese Journal of Analytical Chemistry, 2013, 41, 1243(in Chinese).
陈慧娟, 朱建君, 余萌.分析化学, 2013, 41, 1243.
4 Jing W X, Zhou F, Chen L J. Chemical Journal of Chinese Universities, 2014, 61, 493(in Chinese).
景蔚萱, 周帆, 陈路加.高等学校化学学报, 2014, 61, 493.
5 Hsu C L, Lin J H, Hsu D X, et al. Sensors and Actuators B: Chemical, 2017, 238, 150.
6 Chakraborty P, Dhar S, Debnath K, et al. Journal of Electroanalytical Chemistry, 2019, 833, 213.
7 Wang S, Li S, Wang W, et al. Sensors and Actuators B: Chemical, 2019, 291, 34.
8 Yang P, Wang X, Ge C Y, et al. Applied Surface Science, 2019, 494, 484.
9 Wang M, Ma J, Chang Q, et al. Ceramics International, 2018, 44, 5250.
10 Wu X, Zhang X J, Zhao C J, et al. Talanta, 2018, 179, 836.
11 Rahman M M, Marwani H M, Algethami F K, et al. New Journal of Chemistry, 2017, 41, 6262.
12 Rahman M M, Hussain M M, Asiri A M. Progress in Natural Science-Materials International, 2017, 27, 566.
13 Luo Y Z, Lu Q S, Cai M Q, et al. Nanoscience and Nanotechnology Letters, 2017, 9, 1387.
14 Lu Y, Ma Y H, Ma S Y, et al. Ceramics International, 2017, 43, 7508.
15 Li K Y, Gao M, Huang Z L, et al. Journal of Materials Science-Materials in Electronics, 2017, 28, 7468.
16 Feng Q X, Li X G, Wang J. Sensors and Actuators B:Chemical, 2017, 243, 1115.
17 Espid E, Taghipour F. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 416.
18 Chang H C, Hsu Y L, Tsai C Y, et al. Microsystem Technologies, 2017, 23, 507.
19 Hassan M, Afify A S, Ataalla M, et al. Sensors, 2017, 17, 168.
20 Zhang F, Zhang P, Wu Q, et al. Electrochimica Acta, 2017, 247, 80.
21 Zhao Y, Wei X, Peng N, et al. Sensors (Basel), 2017, 17, 1235.
22 Thomas D, Thomas A, Tom A E, et al. Synthetic Metals, 2017, 232, 123.
23 Moakhar R S, Goh G K L, Dolati A, et al. Applied Catalysis B: Environmental, 2017, 201, 411.
24 Magna G, Catini A, Kumar R, et al. Sensors, 2017, 17, 524.
25 Kim Y K, Hwang S H, Kim S, et al. Sensors and Actuators B: Chemical, 2017, 240, 1106.
26 Lee C T, Chiu Y S. Sensors and Actuators B:Chemical, 2015, 210, 756.
27 Xu R, Jiang Y D, Xia L, et al. Biosens Bioelectron, 2015, 74, 411.
28 Qian J, Wang Y, Pan J, et al. Materials Chemistry and Physics, 2020, 239, 122051.
29 Jung D U J, Ahmad R, Hahn Y B. Journal of Colloid and Interface Science, 2018, 512, 21.
[1] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[2] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[3] 何翠竹. 控制棒驱动机构耐压壳钩爪段用马氏体不锈钢研究[J]. 材料导报, 2022, 36(Z1): 22040180-4.
[4] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[5] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[6] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[7] 宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
[8] 徐秀清, 王玮, 陈之腾, 李云, 胡海军. 加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究[J]. 材料导报, 2022, 36(14): 21030183-6.
[9] 张帆, 纪志永, 汪婧, 郭志远, 方嘉炜, 郭小甫, 赵颖颖, 刘杰, 袁俊生. GO/LiMn2O4膜电极构建及其提锂性能研究[J]. 材料导报, 2022, 36(11): 21040052-7.
[10] 王呼和, 新巴雅尔, 李晓杰. 爆炸冲击诱发AISI304不锈钢马氏体微观形貌研究[J]. 材料导报, 2022, 36(10): 20110061-6.
[11] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[12] 郭金刚, 陈红, 李俊荣, 唐子龙, 陈清明. 316L不锈钢双极板元素富集耐腐蚀特性研究[J]. 材料导报, 2021, 35(z2): 391-394.
[13] 沈天阔. 控制棒驱动机构可拆接头用X12CrNi13马氏体不锈钢冲击失效分析及改进[J]. 材料导报, 2021, 35(z2): 404-409.
[14] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[15] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed