Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20120015-5    https://doi.org/10.11896/cldb.20120015
  金属与金属基复合材料 |
13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理
宋婕1, 常英珂2, 吴瑞德2, 李琳2, 张程煜1,*
1 西北工业大学材料学院,西安 710072
2 陕西应用物理化学研究所,西安 710061
Ductile-Brittle Transition and Embrittlement Mechanism of 13Cr11Ni2W2MoV Martensitic Heat-resistant Stainless Steel
SONG Jie1, CHANG Yingke2, WU Ruide2, LI Lin2, ZHANG Chengyu1,*
1 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
2 Shaanxi Applied Physics and Chemistry Research Institute, Xi'an 710061, China
下载:  全 文 ( PDF ) ( 4546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 13Cr11Ni2W2MoV马氏体热强不锈钢用于制备航天火工品构件时,服役温度低至-196 ℃,需其具有良好的低温冲击韧性。为此本实验研究了13Cr11Ni2W2MoV不锈钢在-150~100 ℃的夏比冲击性能。采用光学显微镜、扫描电子显微镜和透射电镜分析其显微组织及冲击断口形貌,结合冲击能量及脆性断面率确定了韧-脆转变温度(DBTT),分析了韧-脆转变规律。结果表明:13Cr11Ni2W2MoV不锈钢的DBTT为-35.5 ℃。温度由100 ℃降低到-150 ℃,13Cr11Ni2W2MoV不锈钢的冲击吸收功由180 J降低至30 J。断口放射区主要表现为由撕裂棱和解理面共存的准解理断裂模式,随着温度降低,放射区解理台阶的高度减小,撕裂棱的宽度变窄。纤维区及剪切唇区表现为韧性断裂模式,断口以韧窝为主,随温度降低韧窝的数量及深度减少。裂纹萌生能量及稳定裂纹扩展过程中吸收的能量随温度降低显著下降,裂纹扩展的难度变低,因此发生了韧-脆转变。韧-脆转变的可能原因为低温下位错难以产生和滑动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋婕
常英珂
吴瑞德
李琳
张程煜
关键词:  13Cr11Ni2W2MoV马氏体热强不锈钢  韧脆转变  冲击韧性  脆化机理    
Abstract: 13Cr11Ni2W2MoV martensitic heat-strength stainless steel can be used to produce the components of spaceflight igniter, whose working temperature is as low as -196 ℃, so it is rather important to investigate the low-temperature impact toughness of the steel. Therefore, Charpy impact properties of 13Cr11Ni2W2MoV steel were measured in the temperature range of -150 ℃ and 100 ℃. The microstructure and fracture morphology were observed by optical microscope(OM),scanning electron microscope(SEM) and transmission electron microscope(TEM). The ductile-brittle transition temperature (DBTT) was obtained according to the impact energy and the rate of brittle fracture. The results show that the DBTT of 13Cr11Ni2W2MoV is -35.5 ℃. The impact energy of 13Cr11Ni2W2MoV steel decreases from 180 J to 30 J when the temperature decreases from 100 ℃ to -150 ℃. The fracture mode of radiation zones is quasi-cleavage, and there are tearing edges and clea-vage facts on the fracture surface. The height of the cleavage steps and the width of the tearing edge are reduced with the decrease of temperature. The fracture mode of fiber zones and shear lip zones is ductile fracture. Dimples are visible on the fracture surfaces. The number and depth of the dimples decrease with the decrease of temperature. The energy for the crack initiation and stable crack propagation are significantly reduced with the decrease of temperature, and the cracks are easy to grow, so the ductile-brittle transition occurs. The ductile-brittle transition might be caused by difficulties of the dislocation generation and slip at low temperatures.
Key words:  13Cr11Ni2W2MoV martensitic heat-resistant stainless steel    ductile-brittle transition    impact toughness    embrittlement mechanism
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TG115.5  
基金资助: 国防基础科研计划(WDYX19614260201)
通讯作者:  cyzhang@nwpu.edu.cn   
作者简介:  宋婕,硕士研究生,现就读于西北工业大学材料学院,研究方向为不锈钢及钛合金的低温力学性能。
张程煜,博士,西北工业大学材料学院教授,1974年11月生,博士研究生导师。2001年4月和2004年4月于西安交通大学分别获得硕士和博士学位,2006年4月于清华大学博士后流动站出站。主要结合航空、航天和核能等重要应用背景,开展相关材料的力学性能研究。主持国家自然科学基金、国家重大科技专项等数十项科研项目,获国家科学技术进步奖(二等)1项,发表SCI论文50余篇。
引用本文:    
宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
SONG Jie, CHANG Yingke, WU Ruide, LI Lin, ZHANG Chengyu. Ductile-Brittle Transition and Embrittlement Mechanism of 13Cr11Ni2W2MoV Martensitic Heat-resistant Stainless Steel. Materials Reports, 2022, 36(4): 20120015-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120015  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20120015
1 Li J R, Zhang C L, Liu Y Z. Materials Science & Engineering A, 2016, 670, 256.
2 Lu H G, Wang Z Z, Yin F S, et al. Transactions of Materials and Heat Treatment, 2018, 39(4),100(in Chinese).
逯红果, 王壮壮, 殷凤仕, 等. 材料热处理学报,2018,39(4),100.
3 Song Y Y, Ping D H, Yin F X, et al. Materials Science & Engineering A, 2010, 527(3), 618.
4 Kang J, Wang C, Wang G D.Materials Science & Engineering A, 2012, 553(4), 103.
5 Srivatsa K, Srinivas P, Balachandran G, et al. Materials Science & Engineering A, 2016,677, 250.
6 Gustafson A, Agren J.ISIJ International, 2001, 41(4), 359.
7 Li J, Zhang C, Jiang B, et al. Journal of Alloys & Compounds, 2016, 685, 253.
8 Yang G, Liu Z D, Cheng S C, et al. Key Engineering Materials, 2011, 479, 11.
9 Pandey C, Mahapatra M M. Journal of Materials Engineering and Performance, 2016, 25(6), 2202.
10 Zhao Y H, Zhao Z C,Wang J N, et al. Iron and Steel, 2013, 48(4), 75(in Chinese).
赵义翰, 赵成志, 王健楠, 等.钢铁, 2013,48(4), 75.
11 Liu Y, Li A, Cheng X, et al. Materials Science & Engineering A, 2016, 666(1), 32.
12 Morris J W. ISIJ International, 2011, 51(10), 1573.
13 Wang C F, Wang M Q, Shi J, et al. Scripta Materialia,2008,58(6),492.
14 Zhi J H, Wang Y, Li J H, et al. Heat Treatment of Metals, 2018, 43(3), 68(in Chinese).
支金花, 王裕, 李继红, 等.金属热处理, 2018, 43(3), 68.
15 Calliari I, Zanesco M, Dabala K.Materials and Design, 2008,29(1), 246.
16 Jafari M, Kimura Y, Tsuzaki K.Metallurgical & Materials Transactions A,2012, 43 (7), 2462.
17 Hwang B, Kim Y M, Lee S, et al. Metallurgical & Materials Transactions A, 2005, 36(7), 1804.
18 Carrouge D, Bhadeshia H, Woollin P.Science & Technology of Welding & Joining, 2013, 9(5), 380.
19 Dudko V, Fedoseeva A, Kaibyshey R.Materials Science & Engineering A, 2017, 682(13),75.
20 Anoop C R, Adity P, Narayana M, et al. Metallography Microstructure & Analysis, 2018, 7(4), 381.
21 Chatterjee A, Moitra A, Bhaduri A K, et al. Procedia Engineering, 2014, 86, 290.
22 Tomita Y, Okabayashi K.Metallurgical & Materials Transactions A, 1986(10),1203.
23 Stroh A N.Advances in Physics,1957,6(24),419.
24 Haušild P, Nedbal I, Berdin C.Materials Science & Engineering A, 2002, 335(1),172.
25 Zhou G H, Wang D L, Huang Y Z, et al. Journal of Beijing University of Technology, 1997(6), 606(in Chinese).
周国辉, 王东雷, 黄一中, 等. 北京科技大学学报,1997(6),606.
26 Li C J, Li S H, Weng Y Q, et al. Iron and Steel, 1998, 33(10), 53(in Chinese).
李存剑, 李少华, 翁宇庆, 等. 钢铁, 1998, 33(10), 53.
[1] 陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
[2] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[3] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[4] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[5] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[6] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[7] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[8] 傅定发,冷宇,高文理. 微合金元素Nb对低碳铸钢强度和冲击韧性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 237-242.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed