Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 21010187-6    https://doi.org/10.11896/cldb.21010187
  无机非金属及其复合材料 |
蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响
黄时玉, 霍彬彬, 陈春, 张亚梅
东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
The Influence of Metakaolin on the Hydration of Steam-cured Steel Slag Blended Cement
HUANG Shiyu, HUO Binbin, CHEN Chun, ZHANG Yamei
Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 4865KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了偏高岭土对蒸养(60 ℃蒸养12 h)钢渣水泥基材料早期水化和力学性能的影响。结果表明:复掺偏高岭土后,蒸养钢渣偏高岭土复合水泥胶砂的力学性能显著提高,最佳掺量下能够与纯水泥胶砂的力学性能持平。偏高岭土加速了蒸养钢渣水泥的早期水化,并加速了硫酸盐消耗,促进AFm相的形成。蒸养钢渣-偏高岭土复合水泥体系中C-S-H和C-A-S-H凝胶量增多,生成碳铝酸盐相固定活性Al2O3,有利于稳定钙矾石相。同时,偏高岭土显著改善了蒸养钢渣水泥体系的孔隙分布,使基体更加密实。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄时玉
霍彬彬
陈春
张亚梅
关键词:  蒸汽养护  钢渣  偏高岭土  水泥  水化特征  孔结构    
Abstract: The effects of metakaolin on early hydration and mechanical properties of steam-cured steel slag blended cement-based materials (steam-cured at 60℃ for 12h) were investigated. The results show that, with the incorporation of metakaolin under the optimum dosage, the mechanical strength of steam-cured steel slag blended cement mortar is significantly enhanced, which is comparable to that of pure cement mortar. The early hydration process of steam-cured steel slag blended cement is accelerated with metakaolin, as well as the consumption of sulfate, lea-ding to the formation of AFm phases. The amount of C-S-H and C-A-S-H gel of steam-cured ternary Portland cement blends containing steel slag and metakaolin is increased while carbon aluminate is observed to fix active Al2O3, which is beneficial to the stability of ettringite. Additionally, the pore distribution of steel slag blended cement containing metakaolin under steam curing is refined, leading to a denser matrix.
Key words:  steam-cured    steel slag    metakaolin    cement    hydration characteristic    pore structure
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TU528  
基金资助: 国家自然科学基金项目(51778132);2020年度江苏省“333工程”科研资助项目(BRA2020221)
通讯作者:  ymzhang@seu.edu.cn   
作者简介:  黄时玉,东南大学材料科学与工程学院,硕士研究生,主要研究方向为钢渣基复合胶凝材料。
张亚梅,东南大学结构工程专业博士,东南大学材料科学与工程学院教授、博士研究生导师,江苏省先进土木工程材料协同创新中心副主任。1990年毕业于东南大学土木系获学士学位,1998年毕业于东南大学材料系获博士学位。曾任江苏省土木工程材料重点实验室常务副主任。现为ACI CC(美国混凝土学会中国分会)理事,SAC(中国国家标准化委员会)注册ISO TC71专家,中国混凝土与水泥制品协会固废分会建筑固废专委会主任委员,中国土木工程学会再生混凝土分会副主任委员,中国硅酸盐学会水泥化学分会委员,中国混凝土与水泥制品协会预制混凝土构件分会理事,FIB (The International Federation for Structural Concrete) TG3.10委员,FIB com.9委员;Cement and Concrete Composite期刊编委;日本可持续发展协会客座研究员。负责或参与国家自然科学基金项目、973项目子题、重大工程技术攻关项目及企业合作项目等40多项,曾获教育部科技进步二等奖、华夏建设科技一等奖等。研究方向为固体废弃物的资源化利用技术、碱激发胶凝材料、建筑节能新材料、高性能纤维增强水泥基复合材料等。
引用本文:    
黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
HUANG Shiyu, HUO Binbin, CHEN Chun, ZHANG Yamei. The Influence of Metakaolin on the Hydration of Steam-cured Steel Slag Blended Cement. Materials Reports, 2022, 36(5): 21010187-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010187  或          http://www.mater-rep.com/CN/Y2022/V36/I5/21010187
1 National Bureau of Statistics of the People's Republic of China. China statistical yearbook. China Statistics Bureau Press, China, 2019(in Chinese).
中华人民共和国统计局.中国统计年鉴.中国统计局出版社,2019.
2 Xu Y, Zhang Z Z, Wang B, et al. Concrete, 2018(5),76(in Chinese).
许莹,张孜孜,王变,等. 混凝土,2018(5),76.
3 Shi C J. Journal of Materials in Civil Engineering, 2004, 16(3),230.
4 Wang Q, Yan P Y, Yang J W, et al. Construction and Building Mate-rials, 2013,47,1414.
5 Xu Y H, Lu W X, Wang X J, et al. Journal of Shanghai University (Natural Science), 2004(1),91(in Chinese).
许远辉,陆文雄,王秀娟,等.上海大学学报(自然科学版),2004(1),91.
6 Wang Q. Cementitious properties of steel slag and its role in the hydration and hardening process of complex binder. Ph.D Thesis, Tsinghua University, China, 2010(in Chinese).
王强.钢渣的胶凝性能及在复合胶凝材料水化硬化过程中的作用. 博士学位论文, 清华大学, 2010.
7 Han F H, Liu J H, He X J, et al. Journal of Southeast University,2017, 33(3),277.
8 Guo X L, Shi H S. Journal of Materials in Civil Engineering, 2013,25(12),1990.
9 Liu J, Wang D M. Powder Technology, 2017, 320,230.
10 Wild S, Khatib J M, Jones A. Cement and Concrete Research, 1996,26(10),1537.
11 Xu W W, He Z M, Liu J Z, et al. Bulletin of The Chinese Ceramic Society, 2017,36(1),20(in Chinese).
徐雯雯,贺智敏,柳俊哲,等.硅酸盐通报, 2017,36(1),20.
12 Shen P L, Lu L N, Chen W, et al. Construction and Building Materials, 2017,152,357.
13 Bai T, Song Z G, Wu Y G, et al. Ceramics International, 2018, 44(13),15706.
14 Chen Y X, Li L. Concrete, 2017(1),82(in Chinese).
陈玉香, 李璐. 混凝土, 2017(1),82.
15 Han F H,Liu R G,Wang D M,et al.Thermochimica Acta,2014,586,52.
16 Zhuang S Y, Wang Q. Cement and Concrete Research, 2021,140,106283.
17 Han F H, Zhang Z Q, Wang D M, et al. Thermochimica Acta, 2015, 605,43.
18 Martin Bohácˇ, Martin Palou, Radoslav Novotny,et al. Journal of Thermal Analysis and Calorimetry, 2017, 127(1),309.
19 Zemlicka M, Kuzielova E, Kuliffayova M, et al. Ceramics Silikaty, 2015, 59,283.
20 Kirk V, Matthew A, Tandre O, et al. Cement Concrete Composites, 2013, 39,93.
21 Wei J Q, Gencturk B.Cement and Concrete Research,2019,123,105772.
22 Li B L, Wang Y H, Yang L, et al. Journal of Sustainable Cement Based Materials, 2019, 8(6),353.
23 Tang M S, Yuan M Q, Han S F, et al. Journal of the Chinese Ceramic Society, 1979(1),35(in Chinese).
唐明述,袁美栖,韩苏芬,等.硅酸盐学报,1979(1),35.
24 Antoni M,Rossen J,Martirena F, et al. Cement and Concrete Research, 2012, 42(12),1579.
25 Scholer A, Lothenbach B, Winnefeld F, et al. Cement and Concrete Composites, 2015,55,374.
26 Kakali G, Tsivilis S, Aggeli E, et al. Cement and Concrete Research, 2000, 30(7),1073.
27 Coleman N J, Mcwhinnie W R. Journal of Materials Science, 2000, 35(11),2701.
28 Song F, Yu Z L, Yang F L, et al. Ceramics-Silikáty, 2014,58(4),269.
29 Tang J, Wei S F, Li W F,et al. Construction and Building Materials, 2019, 223,177.
30 Mo Z Y, Wang Rui, Gao X J. Construction and Building Materials, 2020, 256,119454.
31 Wu Z W, Lian H Z. High performance concrete. China Railway Publis-hing House, China, 1999(in Chinese).
吴中伟, 廉慧珍.高性能混凝土.中国铁道出版社, 1999.
[1] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[2] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[3] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[4] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[5] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[6] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[7] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[8] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[9] 陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
[10] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[11] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[12] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[13] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[14] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[15] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed