Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21050031-10    https://doi.org/10.11896/cldb.21050031
  无机非金属及其复合材料 |
深热井巷热害隔离材料复配体系及性能研究
贾海林1,2,*, 项海军1,2, 郭明生1,3, 赵万里1,3, 赵晓举1,3, 张民远1,3, 于水军1,2
1 河南理工大学河南省瓦斯地质与瓦斯治理重点实验室-省部共建国家重点实验室培育基地,河南 焦作 454000
2 河南理工大学安全科学与工程学院,河南 焦作 454000
3 中国平煤神马集团炼焦煤资源开发及综合利用国家重点实验室,河南 平顶山 467099
Study on Combined System and Performance of the Thermal Insulation Material Applying to High Temperature Strata Tunnel in Deep Coalmine
JIA Hailin1,2,*, XIANG Haijun1,2, GUO Mingsheng1,3, ZHAO Wanli1,3, ZHAO Xiaoju1,3, ZHANG Minyuan1,3,
YU Shuijun1,2
1 State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo 454000, Henan, China
2 School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
3 State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, China Pingmei Shenma Group, Pingdingshan 467099, Henan, China
下载:  全 文 ( PDF ) ( 6216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作针对深热矿井掘进巷道围岩放热作为主要热源之一导致的井巷高温热害问题,提出延缓或者限制高温围岩向井巷传热的“主动阻/隔热”以实现源头治理热害的研究构想。基于矿山热害学和传热传质学,结合实际巷道的围岩岩性、风流参数等,计算结果证明采用低导热系数的热害隔离材料达到“主动阻/隔热”的理论可行性。运用混凝土学和胶体化学等知识,遴选和自配了热害隔离材料的胶凝材料、骨料、掺和料和外加剂。基于正交试验、实验测试和功效系数分析,获得了热害隔离材料的综合性能最优配比,即粉煤灰用量为水泥的30%(质量分数,下同),可再分散性乳胶粉和聚丙烯纤维掺量分别为胶凝材料的0.5%和0.4%,水灰比为0.6。通过黑红二值化处理和扫描电镜分析发现,最优配比下热害隔离材料的内部微孔密集,分布均匀,且为互不联通的闭孔结构,其数量远大于其他配比。研制出的新型井巷热害隔离材料,其关键性能参数:干密度为602.7 kg/m3,抗压强度为2.58 MPa,导热系数为0.193 7 W/(m·K),导热系数仅为普通混凝土的0.113 3倍,满足井巷高温围岩隔热要求,因此该材料具有广泛应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾海林
项海军
郭明生
赵万里
赵晓举
张民远
于水军
关键词:  围岩放热  主动阻/隔热  热害隔离材料  微孔数量  闭孔结构  低导热系数    
Abstract: Aiming at the problem of high temperature heat damage caused by the surrounding rock of the tunnel in deep-hot mine excavation as one of the main heat sources, the active heat resistance/insulation method that delays or restricts the heat transfer of the high temperature surrounding rock to the mine tunnel is proposed to achieve source control of heat damage research conception. Based on the mine thermal damage and heat and mass transfer theory, combined with the surrounding rock lithology and air flow parameters of the actual tunnel, the calculations proved the theoretical feasibility of using low thermal conductivity thermal insulation materials to achieve active resistance and heat insulation. Using the knowledge of concrete science and colloidal chemistry, the cementitious materials, aggregates, admixtures and admixtures of heat damage isolation materials were selected and self-matched. Based on the orthogonal test, experimental test and efficiency coefficient analysis, the optimal ratio of the comprehensive performance of heat damage isolation material is obtained. That is,the dosage of fly ash is 30% of the cement, the dosage of redispersible latex powder and polypropylene fiber are 0.5% and 0.4% of cementitious material respectively, and the water-cement ratio is 0.6. Through black-red binarization treatment and scanning electron microscope analysis, it was found that the internal micropores of the thermal insulation material with the optimal ratio were dense and evenly distributed, and they were unconnected closed-pore structure, the number of which was much larger than other ratios. The key performance parameters of the new type of mine tunnel thermal insulation material are as follows: dry density is 602.7 kg/m3, compressive strength is 2.58 MPa, thermal conductivity is 0.193 7 W/(m·K), thermal conductivity is only 0.113 3 times of ordinary concrete, which basically meets the thermal insulation requirements of high-temperature surrounding rock in mines, and has a wide range of application values.
Key words:  heat release of surrounding rock    active heat resistance/insulation    the thermal insulation material    number of micropores    closed-pore structure    low thermal conductivity
发布日期:  2022-10-26
ZTFLH:  TD727  
基金资助: 国家重点研发计划(2018YFC0807900);国家自然科学基金(51304069);教育部创新团队发展支持计划(IRT_16R22)
通讯作者:  *jiahailin@126.com   
作者简介:  贾海林,河南理工大学副教授、硕士研究生导师。2006年研究生毕业于河南理工大学安全技术及工程专业,留校至今。2014年毕业于河南理工大学矿业工程专业,获博士学位。主要研究方向:火灾科学与消防技术、工矿企业火灾防治、新型多功能防灭火材料、泡沫混凝土保温材料等。在国内外学术期刊上发表SCI/EI收录论文30余篇,授权国家发明专利5项。主持或参与纵向和横向科研项目30余项,包括国家重点研发计划子课题、国家自然科学基金(青年、面上)、河南省基础与前沿技术研究计划项目等。
引用本文:    
贾海林, 项海军, 郭明生, 赵万里, 赵晓举, 张民远, 于水军. 深热井巷热害隔离材料复配体系及性能研究[J]. 材料导报, 2022, 36(20): 21050031-10.
JIA Hailin, XIANG Haijun, GUO Mingsheng, ZHAO Wanli, ZHAO Xiaoju, ZHANG Minyuan,
YU Shuijun. Study on Combined System and Performance of the Thermal Insulation Material Applying to High Temperature Strata Tunnel in Deep Coalmine. Materials Reports, 2022, 36(20): 21050031-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050031  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21050031
1 Xie H P, Peng S P, He M C. Basic theory and engineering practice in deep mining, Science Press, China, 2006, pp.1(in Chinese).
谢和平, 彭苏萍, 何满潮.深部开采基础理论与工程实践, 科学出版社, 2006, pp.1.
2 Xie H P, Zhou H W, Xue D J, et al. Journal of China Coal Society, 2012, 37(4), 535(in Chinese).
谢和平, 周宏伟, 薛东杰, 等. 煤炭学报, 2012, 37(4), 535.
3 Yuan L. Science & Technology Review, 2016, 34(2), 1(in Chinese).
袁亮. 科技导报, 2016, 34(2), 1.
4 Wan Z J,Bi S K,Zhang Y,et al. Journal of China Coal Society, 2018, 43(8), 2099(in Chinese).
万志军,毕世科, 张源, 等. 煤炭学报, 2018, 43(8), 2099.
5 Miao S J, Xin S, Peng P, et al. Journal of China Coal Society, 2010, 35(4), 613(in Chinese).
苗素军, 辛嵩, 彭蓬, 等. 煤炭学报, 2010, 35(4), 613.
6 Ji J H, Liao Q, Hu Q T, et al. Journal of China Coal Society,2014, 39(4), 692(in Chinese).
姬建虎, 廖强, 胡千庭, 等. 煤炭学报, 2014, 39(4), 692.
7 He G J, Ruan G Q, Yang Z. Journal of China Coal Society, 2011, 36(1), 101(in Chinese).
何国家, 阮国强, 杨壮. 煤炭学报, 2011, 36(1), 101.
8 Zhu N, Zhao J. Building Energy & Environment, 2006 (5), 34(in Chinese).
朱能, 赵靖. 建筑热能通风空调, 2006 (5), 34.
9 Li F H, Liu H D, Zhang C, et al. Journal of North China Institute of Science and Technology, 2018, 15(1), 103(in Chinese).
李付海, 刘含东, 张超, 等. 华北科技学院学报,2018,15(1),103.
10 Luo H Z. Theory and practice of mine ventilation, Liaoning Science and Technology Publishing House, China, 2013, pp.10(in Chinese).
罗海珠.矿井通风降温理论与实践, 辽宁科学技术出版社, 2013, pp.10.
11 Wei X J, Hu C S. Theory and engineering design of mine cooling, China Coal Industry Publishing House, China, 2008, pp.254(in Chinese).
卫修君, 胡春胜. 矿井降温理论与工程设计, 煤炭工业出版社, 2008, pp.254.
12 Yang D Y, Yang T H. Mine thermal environment and its control, Metallurgical Industry Press, China, 2009, pp 387(in Chinese).
杨德源, 杨天鸿. 矿井热环境及其控制, 冶金工业出版社, 2009, pp.387.
13 Yuan L. Journal of Mining & Safety Engineering, 2007, 24 (3), 298(in Chinese).
袁亮.采矿与安全工程学报, 2007, 24 (3), 298.
14 He M C. Mining Science and Technology, 2009, 19(3), 269.
15 Su S, Chen H W, Teakle P, et al. Journal of Environmental, 2007, 86(1), 1.
16 Su S, Chen H, Teakle P, et al. Journal of Environmental Management, 2008, 86(1), 44.
17 Sivret J, Millar D L, Lyle G. Iop Conference, 2017, 278 (1), 12170.
18 Li Z, Li Y T. New Building Materials, 2011, 38(2), 46(in Chinese).
李珠, 李赟婷. 新型建筑材料, 2011, 38(2), 46.
19 Zheng H. The influence of mineral admixtures on properties of thermal insulation material with expanded and vitrified beads. Master’s Thesis, Chongqing University, China, 2015(in Chinese).
郑辉. 矿物掺合料对玻化微珠保温材料性能的影响. 硕士学位论文, 重庆大学, 2015.
20 Li G F. Research on technology of active cooling supporting structure in high temperature road way. Ph.D. Thesis,Taiyuan University of Techno-logy, China, 2010(in Chinese).
李国富. 高温岩层巷道主动降温支护结构技术研究. 博士学位论文, 太原理工大学, 2010.
21 Li C. Research and application of energy-saving and thermal-insulating concrete plates with expanded pearlite and ceramist. Master’s Thesis, Anhui University of Science and Technology, China, 2014(in Chinese).
李成. 膨胀珍珠岩及陶粒节能保温混凝土板的研制. 硕士学位论文, 安徽理工大学, 2014.
22 Zhou M J, Wang N N, Zhao X Y, et al. Concrete, 2009(4), 104(in Chinese).
周明杰, 王娜娜, 赵晓艳, 等. 混凝土, 2009(4), 104.
23 Kearsley E P, Wainwright P J. Cement and Concrete Research, 2001, 31(1), 105.
24 Kearsley E P, Wainwright P J. Cement and Concrete Research, 2002, 32(2), 233.
25 Kolias S, Georgiou C. Cement and Concrete Composites, 2005, 27(2), 211.
26 Nambiar E K K, Ramamurthy K. Cement and Concrete Composites, 2006, 28(5), 475.
27 Peng J H, Mao J B, Zhang J X, et al. Bulletin of the Chinese Ceramic Society, 2011, 30(4), 915(in Chinese).
彭家惠, 毛靖波, 张建新,等. 硅酸盐通报, 2011, 30(4), 915.
28 Lin X S. Development and properties of foamed concrete with fiber reinforcement. Master’s Thesis, Heifei University of Technology, China, 2007(in Chinese).
林兴胜. 纤维增强泡沫混凝土的研制与性能. 硕士学位论文, 合肥工业大学, 2007.
29 Zhang W T, Qiao L, Li Q W. Mining Research and Development, 2016, 36(7), 35(in Chinese).
张威涛, 乔兰, 李庆文. 矿业研究与开发, 2016, 36(7), 35.
No related articles found!
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed