Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21100065-5    https://doi.org/10.11896/cldb.21100065
  无机非金属及其复合材料 |
养护温度对矿渣硫铝酸盐水泥水化的影响机理
徐玲琳1,2, 欧阳军1,2, 杨肯1,2, 徐名凤3, 周健3
1 先进土木工程材料教育部重点实验室,上海 201804
2 同济大学材料科学与工程学院,上海 201804
3 河北工业大学土木与交通学院,天津 300401
Impacts of Curing Temperature on the Hydration of Slag-Calcium Sulfoaluminate Cement
XU Linglin1,2, OUYANG Jun1,2, YANG Ken1,2, XU Mingfeng3, ZHOU Jian3
1 Key Laboratory of Advanced Civil Engineering Materials Of Ministry Of Education, Shanghai 201804, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
3 School of Civil and Transportation Engineering,Hebei University of Technology,Tianjin 300401, China
下载:  全 文 ( PDF ) ( 5738KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了5 ℃、20 ℃和40 ℃养护下矿渣硫铝酸盐水泥的强度发展、水化放热、干燥收缩、水化产物及孔结构演变。结果表明,不同于硅酸盐水泥,矿渣硫铝酸盐水泥早期水化生成较多钙矾石,但累计放热量较低。养护温度越高,矿渣硫铝酸盐水泥石的早期力学强度越高;但20 ℃下后期抗压强度显著提升,远超过其他温度。相应的,源自小孔内水分蒸发产生的较大孔壁压力,20 ℃下水泥石表现出最显著的收缩行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐玲琳
欧阳军
杨肯
徐名凤
周健
关键词:  矿渣硫铝酸盐水泥  养护温度  水化机理  孔结构    
Abstract: he compressive strength development, hydration exothermic, drying shrinkage, hydration products and pore structure of slag-calcium sulfoaluminate cement at different temperature (5 ℃, 20 ℃ and 40 ℃) were investigated. The results indicate that, different from Portland cement, the hydration of slag-calcium sulfoaluminate cement accompanies with more ettringite at early hydration stage, but the cumulative heat is lower. Elevated curing temperature results in a higher mechanical strength, but the later compressive strength is significantly higher at 20 ℃, far exceeding that cured at other temperatures. Correspondingly, the cement paste exhibits the most significant shrinkage at 20 ℃, which results from the greater pore wall pressure generated by the evaporation of water from the small pores.
Key words:  slag-calcium sulfoaluminate cement    curing temperature    hydration mechanisms    pore structure
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TU528  
通讯作者:  周健,通信作者,河北工业大学土木与交通学院教授、博士研究生导师。2004年9月在山东大学土建与水利学院获得学士学位,2006年9月和2011年9月在荷兰代尔夫特理工大学土木工程与地球科学学院分别获得硕士学位和博士学位。2017年至今工作于河北工业大学。目前主要从事ECC材料与低碳利废水泥方面的研究,主持国家自然科学基金项目3项、军委科技委国防创新特区项目1项、“十三五”重点研发计划项目子课题1项,发表学术论文50余篇,授权中国发明专利10项,获2020年度河北省技术发明一等奖。   
作者简介:  徐玲琳,工学博士,同济大学副教授,博士研究生导师。2013年9月在同济大学获得工学博士学位(硕博连读),2015年底进入同济大学材料科学与工程学院工作。先后主持了国家自然科学基金、硅酸盐建筑材料国家重点实验室项目、中央高校基本科研业务费专项资金项目(交叉学科)等课题10余项。在Cement and Concrete Research、Cement and Concrete Composites、《硅酸盐学报》等国内外期刊发表论文50余篇,授权专利7项,主编/参编中英文教材多本。
引用本文:    
徐玲琳, 欧阳军, 杨肯, 徐名凤, 周健. 养护温度对矿渣硫铝酸盐水泥水化的影响机理[J]. 材料导报, 2023, 37(11): 21100065-5.
XU Linglin, OUYANG Jun, YANG Ken, XU Mingfeng, ZHOU Jian. Impacts of Curing Temperature on the Hydration of Slag-Calcium Sulfoaluminate Cement. Materials Reports, 2023, 37(11): 21100065-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100065  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21100065
1 Gruskovnjak A, Lothenbach B, Winnefeld F, et al. Cement and Concrete Research, 2008, 38(7), 983.
2 Li H Y, Ding Z, Xing F, et al. Concrete, 2008(10), 54 (in Chinese).
李虹燕, 丁铸, 邢锋, 等. 混凝土, 2008(10), 54.
3 Fang Y H, Zhu Q, Cen Y K, et al. Journal of the Chinese Ceramic Society, 2008 (4), 444 (in Chinese).
方永浩, 朱琦, 岑奕侃, 等. 硅酸盐学报, 2008(4), 444.
4 Gu Y, Fang Y, You D, et al. Construction and Building Materials, 2015, 79, 1.
5 Zhao M, Zhang M T, Peng J H, et al. Material Review, 2021,35(12), 12099 (in Chinese).
赵敏, 张明涛, 彭家惠, 等. 材料导报, 2021,35(12), 12099.
6 Xu L L, Li N, Wang P M, et al. Journal of the Chinese Ceramic Society, 2016, 44(11), 1552 (in Chinese).
徐玲琳, 李楠, 王培铭, 等. 硅酸盐学报, 2016, 44(11), 1552.
7 陈智丰, 张振秋, 周健. 中国专利, 11219814P, 2018-03-23.
8 Sun Z N, Zhou J, Mu R, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(8), 2362 (in Chinese).
孙正宁, 周健, 慕儒, 等. 硅酸盐通报, 2019, 38(8), 2362.
9 Liu H R. Chemical corrosion resistance and mechanism analysis of high-flexural strength low-heat slag calcium sulfoaluminate cement. Master's Thesis, Hebei University of Technology, China, 2019 (in Chinese).
刘浩然. 高抗折低热矿渣硫铝酸盐水泥抗化学侵蚀性能及机理,硕士学位论文, 河北工业大学, 2019.
10 Gong B, Li H, Zhang B H, et al. Concrete, 2021(4), 125 (in Chinese).
龚博, 李辉, 张宝虎, 等. 混凝土, 2021(4), 125.
11 Zhou S, Zhou H, Li D X.Materials Reports, 2021,35(S1), 284 (in Chinese).
周顺, 周涵, 李东旭. 材料导报, 2021,35(S1), 284.
12 Qian J S, Yu J C, Sun H Q, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1569 (in Chinese).
钱觉时, 余金城, 孙化强, 等. 硅酸盐学报, 2017, 45(11), 1569.
13 Xu L L, Fan S H, Zhang G F, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1613 (in Chinese).
徐玲琳, 范胜华, 张国防, 等. 硅酸盐学报, 2017, 45(11), 1613.
14 Chen X, Wang Y, Chon O, et al. Journal of Transportation Engineering Part B-Pavements, 2020,25(3), 142.
15 Wang P M, Li N, Xu L L, et al. Journal of the Chinese Ceramic Society, 2017, 45(2), 242 (in Chinese).
王培铭, 李楠, 徐玲琳, 等. 硅酸盐学报, 2017, 45(2), 242.
16 Ren Z C. Matching hydration of mineral of Portland cement clinker and its adjustment. Master's Thesis, Jinan University, China, 2021 (in Chinese).
任尊超. 硅酸盐水泥熟料单矿的匹配水化及其调控, 硕士学位论文, 济南大学, 2021.
17 Sun Z N, Zhou J, Qiu L Q. Materials, 2020, 13(11), 2514.
18 Wu G Q. Journal of the Chinese Ceramic Society, 1988(5), 41 (in Chinese).
吴国权. 硅酸盐学报, 1988(5), 41.
19 GB/T 200—2017.Moderate-heat Portland cement, low-heat Portland cement. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration, China, 2018 (in Chinese).
GB/T 200—2017. 中热硅酸盐水泥、低热硅酸盐水泥. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2018.
20 Xia J M. Effects of pore solution on the drying shrinkage of hardened cement pastes and its mechanism. Master's Thesis, Chongqing University, China, 2010 (in Chinese).
夏建民. 孔溶液对水泥石干燥收缩的影响及其机理, 硕士学位论文, 重庆大学, 2010.
21 Lee J, Yoon Y. KSCE Journal of Civil Engineering, 2015, 19(5), 1396.
22 Abbas H, Prasad J. Cement & Concrete Composites, 2016, 68, 35.
23 Aly T, Sanjayan J G. Journal of Materials in Civil Engineering, 2010, 22(5), 525.
24 Chen L J, Dou L Y, Zhang C Y, et al. Concrete, 2012, 273(7), 28 (in Chinese).
陈立军, 窦立岩, 张春玉, 等. 混凝土, 2012, 273(7), 28.
[1] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[2] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[3] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[4] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[5] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用多孔微球发泡法制备泡沫玻璃及其烧成工艺研究[J]. 材料导报, 2023, 37(1): 21050246-5.
[6] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[7] 范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
[8] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[9] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[10] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[11] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[12] 贺炯煌, 龙广成, 常智杨, 杨智涵, 谢友均. 不同养护温度下SAP对水泥浆体水化动力学的影响[J]. 材料导报, 2022, 36(22): 20100061-7.
[13] 贾海林, 项海军, 郭明生, 赵万里, 赵晓举, 张民远, 于水军. 深热井巷热害隔离材料复配体系及性能研究[J]. 材料导报, 2022, 36(20): 21050031-10.
[14] 赵燕茹, 刘明, 王磊, 王志慧. 碳化高温后普通混凝土抗压强度及孔结构演化规律[J]. 材料导报, 2022, 36(19): 21050152-8.
[15] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed