Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20100228-8    https://doi.org/10.11896/cldb.20100228
  无机非金属及其复合材料 |
偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性
范利丹1,2, 孙亮1, 余永强1,2, 张纪云1, 郭佳奇1
1 河南理工大学土木工程学院,河南 焦作 454000
2 河南省地下空间开发及诱发灾变防治国际联合实验室,河南 焦作 454000
Metakaolin Improves Adaptability of Cement-based Grouting Materials Used in High Geotemperature Tunnel Engineering
FAN Lidan1,2, SUN Liang1, YU Yongqiang1,2, ZHANG Jiyun1, GUO Jiaqi1
1 School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000,Henan, China
2 International Joint Research Laboratory of Henan Province for Underground Space Development and Disaster Prevention, Jiaozuo 454000,Henan, China
下载:  全 文 ( PDF ) ( 5746KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高水泥基注浆材料在高地温隧道工程的适应性,通过在室内模拟相应温湿度环境,研究了偏高岭土水泥基注浆材料的基本物理性能、力学性能以及隔热性。研究表明:温度升高、偏高岭土掺量增加、水胶比减小都会降低浆液析水率、增大浆液的黏度,在较小水胶比时温度对析水率的影响不明显,但温度和水胶比对浆液黏度的影响显著;浆液凝结时间随温度升高而缩短,水胶比为0.8的浆液在温度高于20 ℃时,凝结时间随偏高岭土掺量增加不断缩短,对水胶比为1.0的浆液,高温和较低温度下偏高岭土掺量对凝结时间的影响趋势各不同;养护温度达到50 ℃时,浆液结石体中后期抗压强度出现倒缩;抗压强度随偏高岭土掺量增加先增大后减小,在40 ℃养护下最佳掺量为8%时,抗压强度最大提高32.2%;随养护温度升高,源于偏高岭土的结石体增强因子先增大后减小,在50 ℃时达到最高值0.4;浆液胶结强度在30 ℃时达最高值23.8 MPa;结石体导热系数与养护温度呈线性负相关,偏高岭土的掺加可降低结石体导热系数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范利丹
孙亮
余永强
张纪云
郭佳奇
关键词:  高地温  偏高岭土  水泥基注浆材料  养护温度  导热系数    
Abstract: To improve adaptation of cement-based grouting material for high geotemperature tunnel, in simulating temperature and humidity conditions, the basic physical properties, mechanical and thermal insulation properties of cement-based grouting materials with different contents of metakaolin were studied. The results showed that the syneresis rate of the grouting material would reduce with the rising of temperature, the increase of metakaolin content, and the decrease of water-binder ratio. Nevertheless, the change of viscosity was just opposite to the syneresis rate. While the water-binder ratio was relatively small, the temperature has little effect on the syneresis rate, and however the temperature and water-binder ratio have obvious effect on the viscosity. The setting time of the grouting material decreased as the temperature increased. Furthermore, when the curing temperature was above 20 ℃,the setting time of the 0.8 water-binder ratio grouting material continuously shortened with the metakaolin increasing. For the grouting material with the water-binder ratio of 1.0, the metakaolin had different effect on the setting time at higher and lower temperatures. When the curing temperature reached 50 ℃, the compressive strength of the harden paste would decreased in the middle and late stages. The compressive strength escalated first and then decreased with the increase of the content of metakaolin, and the maximum value increased by 32.2% when the optimum content was 8% at the curing temperature of 40 ℃. As the curing temperature increased, the strength enhancement factor derived from metakaolin firstly increased and then decreased, and it reached the highest value of 0.4 at the curing temperature of 50 ℃. The cementing strength reached the highest value of 23.8 MPa at the curing temperature of 30 ℃. The thermal conductivity of harden paste decreased linearly with the curing temperature increasing. And meanwhile, the mixing of metakaolin could reduce thermal conductivity.
Key words:  high geotemperature    metakaolin    cement-based grouting material    curing temperature    thermal conductivity
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  U454  
基金资助: 中国博士后科学基金(2018M631114);河南省科技攻关项目(212102310974;222102320034);中铁隧道集团有限公司科技创新计划项目(H20-095)
通讯作者:  yyq@hpu.edu.cn   
作者简介:  范利丹,河南理工大学土木工程学院,副教授。2008年毕业于郑州大学,获材料学硕士学位。主要从事地下工程支护材料、绿色建筑材料等方面的教学与科研工作。近年来,以第一作者/通讯作者在国内外核心期刊发表学术论文20余篇,其中SCI & EI检索6篇;获国家授权发明专利9项。
余永强,河南理工大学土木工程学院,教授。2003年毕业于重庆大学,获矿业工程博士学位。同年于河南理工大学土木工程学院工作至今,主要从事地下工程开挖与支护、安全技术及工程方面的研究。在国内外重要期刊发表文章40多篇,获省部级奖励10余项。
引用本文:    
范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
FAN Lidan, SUN Liang, YU Yongqiang, ZHANG Jiyun, GUO Jiaqi. Metakaolin Improves Adaptability of Cement-based Grouting Materials Used in High Geotemperature Tunnel Engineering. Materials Reports, 2022, 36(6): 20100228-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100228  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20100228
1 Shi Z J, Fan L D, Song Y, et al. Chinese Journal of Underground Space and Engineering, 2018, 14(4), 974 (in Chinese).
史志杰, 范利丹, 宋妍, 等.地下空间与工程学报, 2018, 14(4), 974.
2 Wang M N, Hu Y P, Jiang C, et al. Materials, 2020, 13, 1572.
3 Jiang G, Rong Z D, Sun W. Journal of Southeast University (Natural Science Edition), 2015, 45(1), 121(in Chinese).
姜广, 戎志丹, 孙伟.东南大学学报(自然科学版), 2015, 45(1), 121.
4 Qiao C Y, Ni W, Wang C L, et al. Journal of Building Materials, 2015, 18(5), 757(in Chinese).
乔春雨, 倪文, 王长龙, 等.建筑材料学报, 2015, 18(5), 757.
5 Xie J, Zhang H, Duan L, et al. Construction and Building Materials, 2020, 256, 119393.
6 Zeng J J, Wang S N, Fan Z H, et al. Journal of Wuhan University of Technology, 2015, 37(4), 22 (in Chinese).
曾俊杰, 王胜年, 范志宏, 等.武汉理工大学学报, 2015, 37(4), 22.
7 Kocak Y. Journal of Building Engineering, 2020, 31, 101419.
8 Dong M, Ma J D, Li Y F. Journal of Materials Science and Engineering, 2020, 38(2), 295 (in Chinese).
董猛, 马建栋, 李云峰.材料科学与工程学报, 2020, 38(2), 295.
9 Zhang Y J, Wang S, Li L P, et al. Construction and Building Materials, 2020, 262, 119893.
10 Zeng J J, Wang S N, Xiong J B, et al. Concrete, 2020(5), 69 (in Chinese).
曾俊杰, 王胜年, 熊建波, 等.混凝土, 2020(5), 69.
11 Sonebi M, Schmidt W, Khatib J. Chemistry and Materials Research, 2013, 5, 106.
12 Tian S M, Wang W, Tang G R, et al. Tunnel Construction, 2021, 41(5), 697 (in Chinese).
田四明,王伟,唐国荣, 等.隧道建设(中英文), 2021, 41(5), 697.
13 Yan J, He C, Zeng Y H, et al. China Railway Science, 2019, 40(5), 53 (in Chinese).
严健, 何川, 曾艳华,等.中国铁道科学, 2019, 40(5), 53.
14 Hou X W, Li X Q, Jiang L W, et al. Journal of Railway Engineering Society, 2011, 28(5), 60 (in Chinese).
侯新伟, 李向全, 蒋良文,等.铁道工程学报, 2011, 28(5), 60.
15 Snelson D, Wild S, O'Farrell M. Journal of Civil Engineering and Ma-nagement, 2011, 17, 56.
16 Liu Q S, Lu C B, Liu B, et al. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2), 3730(in Chinese).
刘泉声, 卢超波, 刘滨, 等.岩石力学与工程学报, 2014, 33(S2), 3730.
17 Dong J H, Li Z Y. Journal of Building Materials, 2010, 13(5), 675 (in Chinese).
董继红, 李占印.建筑材料学报, 2010, 13(5), 675.
18 Thomas J J, Rothstein D, Jennings H M, et al. Cement and Concrete Research, 2003, 33, 2037.
19 Termkhajornkit P, Barbarulo R. Cement and Concrete Research, 2012, 42(3), 526.
20 Morsy M S. Cement and Concrete Research, 1999, 29(4), 603.
21 Zhang W H, Zhang Y S. Bulletin of the Chinese Ceramic Society, 2015, 34(1), 149 (in Chinese).
张文华, 张云升.硅酸盐通报, 2015, 34(1), 149.
22 Yan P Y, Li M Y, Zhou Y Q. Journal of Chinese Electron Microscopy So-ciety, 2019, 38(1), 82 (in Chinese).
阎培渝, 黎梦圆, 周予启.电子显微学报, 2019, 38(1), 82.
23 Yang W Y. Journal of Chinese Electron Microscopy Society, 2000(4), 523 (in Chinese).
杨文言.电子显微学报, 2000(4), 523.
24 Wang M N, Hu Y P, Wang Q L, et al. Construction and Building Mate-rials, 2019, 229, 116989.
25 Cyr M, Lawrence P, Ringot E. Cement and Concrete Research, 2005, 36, 264.
26 El-Gamal S M A, Amin M S, Ramadan M. HBRC Journal, 2017, 13, 144.
27 Ding X, Pu X C. Journal of the Chinese Ceramic Society, 1999, 27(4), 3 (in Chinese).
丁星, 蒲心诚.硅酸盐学报, 1999, 27(4), 3.
28 Cui S A, Liu P, Cui E Q, et al. Construction and Building Materials, 2018, 173, 124.
29 Liu P, Cui S A, Li Z H, et al. Construction and Building Materials, 2019, 207, 329.
30 Demirboɡˇa R. Building and Environment, 2007, 42(7), 2467.
31 Rashad A M. International Journal of Thermophysics, 2017, 38, 126.
[1] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[2] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[3] 贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
[4] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[5] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[6] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[7] 陈玉星, 王天浩, 黎晓杰, 付海, 何力, 龚维. LDH-热膨胀微胶囊的合成及发泡EVA复合材料的综合性能[J]. 材料导报, 2021, 35(4): 4194-4199.
[8] 赵立晓, 王鹏刚, 王兰芹, 赵铁军, 光文涛. 混凝土内部温湿度响应参数分析:水分扩散系数与导热系数[J]. 材料导报, 2021, 35(12): 12075-12080.
[9] 张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁. 特殊粒径分布球形Ni粉的制备及SLM工艺性能研究[J]. 材料导报, 2020, 34(6): 6114-6119.
[10] 郭建业, 赵英民, 吴朝军, 李文静, 杨洁颖, 张丽娟, 苏力军. 温度对石英纤维毡隔热性能的影响[J]. 材料导报, 2020, 34(24): 24019-24022.
[11] 张长森, 胡志超, 王旭, 诸华军, 杨旭, 顾薛苏. 硅烷偶联剂/偏高岭土基地聚合物水化热及动力学研究[J]. 材料导报, 2020, 34(14): 14105-14109.
[12] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[13] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[14] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[15] 王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed