Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12075-12080    https://doi.org/10.11896/cldb.20040215
  无机非金属及其复合材料 |
混凝土内部温湿度响应参数分析:水分扩散系数与导热系数
赵立晓1, 王鹏刚1,2, 王兰芹1, 赵铁军1,2, 光文涛1
1 青岛理工大学土木工程学院,青岛 266033
2 山东省高校蓝色经济区工程建设与安全协同创新中心,青岛 266033
Analysis of Parameters for Temperature and Humidity Response in Concrete: Moisture Diffusion Coefficient and Thermal Conductivity
ZHAO Lixiao1, WANG Penggang1,2, WANG Lanqin1, ZHAO Tiejun1,2, GUANG Wentao1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2 Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao 266033, China
下载:  全 文 ( PDF ) ( 2818KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土的水分扩散系数和导热系数是联系服役环境与混凝土内部微环境的桥梁。本工作基于Fick第二定律与Boltzmann转换,获得了不同水灰比的成熟混凝土内部相对湿度与水分扩散系数的关系,揭示了成熟混凝土内部相对湿度与水灰比对混凝土水分扩散系数的影响规律。本工作还建立了干燥状态下普通混凝土导热系数与密度的关系,结合描述等温吸附曲线的BSB模型,建立了考虑混凝土密度与混凝土内部相对湿度的混凝土导热系数模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵立晓
王鹏刚
王兰芹
赵铁军
光文涛
关键词:  混凝土  水分扩散系数  导热系数  相对湿度    
Abstract: Moisture diffusion coefficient and thermal conductivity of concrete are the bridges between service environment and concrete internal microenvironment. In this paper, based on Fick's second law of diffusion and Boltzmann transformation, the relationship between internal relative humidity and moisture diffusion coefficient of concrete with different water-cement ratios was obtained. The effects law of relative humidity and water-cement ratio on moisture diffusion coefficient of concrete was revealed. The relationship between thermal conductivity and density of normal concrete at dry state was established, combined with the BSB model of isothermal adsorption, the thermal conductivity model of concrete which considering moisture content was established.
Key words:  concrete    moisture diffusion coefficient    thermal conductivity    relative humidity
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TU528.1  
基金资助: 十三五国家重点研发计划(2017YFB0310000);山东省重点研发计划(2019GSF110006);高性能土木工程材料国家重点实验室开放基金(2019CEM006)
通讯作者:  wangpenggang@qut.edu.cn   
作者简介:  赵立晓,2016年6月毕业于山东农业大学,获得工学学士学位。2018年12月毕业于青岛理工大学,获得工程硕士学位。现为东南大学材料科学与工程学院博士研究生。目前主要研究领域为混凝土耐久性。
王鹏刚,青岛理工大学,副教授,硕士研究生导师。2014年6月毕业于青岛理工大学,2014—2016年,在东南大学和江苏省建筑科学研究院从事博士后研究工作。2019—2020年,英国伦敦大学学院访问学者。主要从事混凝土耐久性、防护与修复的研究。
引用本文:    
赵立晓, 王鹏刚, 王兰芹, 赵铁军, 光文涛. 混凝土内部温湿度响应参数分析:水分扩散系数与导热系数[J]. 材料导报, 2021, 35(12): 12075-12080.
ZHAO Lixiao, WANG Penggang, WANG Lanqin, ZHAO Tiejun, GUANG Wentao. Analysis of Parameters for Temperature and Humidity Response in Concrete: Moisture Diffusion Coefficient and Thermal Conductivity. Materials Reports, 2021, 35(12): 12075-12080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040215  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12075
1 Song H W, Kwon S J. Cement Concrete Research, 2009, 39(9), 814.
2 Fan X Q. Journal of Building Structures, 1999(2), 43(in Chinese).
樊小卿.建筑结构学报, 1999(2), 43.
3 Baroghel-Bouny V, Nguyen T Q, Dangla P. Cement Concrete Composites, 2009, 31(8), 522.
4 Stewart M G, Wang X, Nguyen M N. Engineering Structures, 2011, 33(4), 1326.
5 Wu J, Zhang X C, Wang Z. Concrete, 2016(9), 9(in Chinese).
吴瑾, 张兴才, 汪中.混凝土, 2016(9), 9.
6 Li G, Yuan Y S, Geng O. Concrete, 2004(11), 49(in Chinese).
李果, 袁迎曙, 耿欧.混凝土, 2004(11), 49.
7 Amey S L, Johnson D A, Miltenberger M A, et al. ACI Structural Journal, 1998, 95(2),205.
8 Jiang D W, Li G, Yuan Y S. Concrete, 2004(7), 3(in Chinese).
蒋德稳, 李果, 袁迎曙.混凝土, 2004 (7), 3.
9 Zhang W P, Tong F, Xing Y S, et al. Journal of Building Materials, 2015, 18(2), 5(in Chinese).
张伟平, 童菲, 邢益善,等. 建筑材料学报, 2015, 18(2), 5.
10 Janssen H, Blocken B, Carmeliet J. International Journal of Heat and Mass Transfer, 2007, 50(5), 1128.
11 Jiang J H, Yuan Y S, Zhang X M. Journal of Central South University(Science and Technology), 2010(5), 290(in Chinese).
蒋建华, 袁迎曙, 张习美.中南大学学报(自然科学版), 2010(5), 290.
12 Jiang J H, Yuan Y S, Wang S L, et al. Journal of Central South Univer-sity(Science and Technology), 2013(12), 5091(in Chinese).
蒋建华, 袁迎曙, 王嵩林,等. 中南大学学报(自然科学版), 2013(12), 5091.
13 Zhang J, Hou D W. Journal of Tsinghua University (Science and Techno-logy), 2008(12),7(in Chinese).
张君, 侯东伟.清华大学学报(自然科学版), 2008(12),7.
14 Bažant Z P, Najjar L J. Matériaux Et Construction, 1972, 5(1), 3.
15 Ozaka Y, Fujiwara T, Akita H. Magazine of Concrete Research, 1997, 49(179), 129.
16 Harmathy T Z. Journal of Materials, 1970, 5(1), 47.
17 Marshall A L. Building Science, 1972, 7(3), 167.
18 Xiao J Z, Song Z W, Zhang F. Journal of Building Materials, 2010, 13(1), 17(in Chinese).
肖建庄, 宋志文, 张枫.建筑材料学报, 2010, 13(1), 17.
19 Sun W E. Low Temperature Architecture Technology, 1994(3), 16(in Chinese).
孙无二. 低温建筑技术, 1994(3), 16.
20 Jiang J H. Quantitative model of climate load and its applications in life predictions of concrete structures. Ph.D. Thesis, China University of Mining and Technology, China,2011 (in Chinese).
蒋建华.气候环境作用定量模式及其在混凝土结构寿命预计中应用. 博士学位论文,中国矿业大学, 2011.
21 Benboudjema F, Meftah F, Torrenti J M. Engineering Structures, 2005, 27(2), 239.
22 Xi Y, Bažant Z P, Jennings H M. Advanced Cement Based Materials, 1994, 1(6), 248.
23 GB 50176-2016 Code for thermal design of civil building, China Architecture & Building Press, China, 2016 (in Chinese).
GB 50176-2016民用建筑热工设计规范,中国建筑工业出版社,2016.
24 You F, Zheng J L. Journal of Fuzhou University (Natural Science Edition), 2018,46(3),391(in Chinese).
游帆,郑建岚.福州大学学报(自然科学版),2018,46(3),391.
25 Zhu L H, Dai J, Bai G L, et al. Journal of Building Materials, 2015, 18(5), 852(in Chinese).
朱丽华, 戴军, 白国良,等. 建筑材料学报, 2015, 18(5), 852.
26 Uysal H, Demirboğa R, Şahin R, et al. Cement Concrete Research, 2004, 34(5), 845.
27 Wongkeo W, Thongsanitgarn P, Pimraksa K, et al. Materials & Design, 2012, 35,434.
28 Díez Ramírez F M, Muñoz F B, López E L, et al. Energy and Buildings, 2013, 58,310.
29 Li C Q. Study on water and ionic transport processes in cover concrete under drying-wetting cycles. Ph.D. Thesis, Tsinghua University, China, 2009 (in Chinese).
李春秋.干湿交替下表层混凝土中水分与离子传输过程研究. 博士学位论文,清华大学, 2009.
30 Sun J Y. Research on moisture transport under wetting and drying conditions. Ph.D. Thesis, Zhejiang University, China, 2012 (in Chinese).
孙金阳.混凝土湿润与干燥过程中水分传输规律研究. 博士学位论文,浙江大学, 2012.
31 Gao S Q, Liu H P. Capillary mechanics, Science Press, China, 2010 (in Chinese).
高世桥, 刘海鹏.毛细力学,科学出版社, 2010.
32 Zhang Q Z, Gu X L, Zhang W P, et al. Journal of Tongji University (Natural Science), 2012,(12), 11 (in Chinese).
张庆章, 顾祥林, 张伟平,等. 同济大学学报(自然科学版), 2012,(12), 11.
33 Wang Y Y, Huang J J, Wang D J, et al. Construction and Building Materials, 2020, 230, 117034.
[1] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[2] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[3] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[4] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[5] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[6] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[7] 陈新明, 史玉良, 焦华喆, 靳翔飞, 吴亚闯, 谭毅. 基于搜索锥算法的纤维分布特征及对BFRC的增强机制[J]. 材料导报, 2021, 35(4): 4061-4066.
[8] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[9] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[10] 陈玉星, 王天浩, 黎晓杰, 付海, 何力, 龚维. LDH-热膨胀微胶囊的合成及发泡EVA复合材料的综合性能[J]. 材料导报, 2021, 35(4): 4194-4199.
[11] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[12] 王尚伟, 朱海堂, 王博, 寇磊. 混凝土配合比优化设计的紧密堆积理论综述[J]. 材料导报, 2021, 35(3): 3085-3091.
[13] 孙国文, 王朋硕, 张营, 闫娜. 水下不分散混凝土性能的研究进展[J]. 材料导报, 2021, 35(3): 3092-3103.
[14] 钱珊珊, 姚燕, 王子明, 崔素萍, 刘晓, 郑春扬. 降低高强混凝土黏度的减水剂制备与机理研究[J]. 材料导报, 2021, 35(2): 2046-2051.
[15] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed