Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3092-3103    https://doi.org/10.11896/cldb.19110200
  无机非金属及其复合材料 |
水下不分散混凝土性能的研究进展
孙国文, 王朋硕, 张营, 闫娜
石家庄铁道大学材料科学与工程学院,石家庄 050043
Research Progress on Performance of Anti-washout Underwater Concrete
SUN Guowen, WANG Pengshuo, ZHANG Ying, YAN Na
School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
下载:  全 文 ( PDF ) ( 9451KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水下不分散混凝土能够在水中直接浇筑,不易发生分散与离析,对施工环境几乎无污染,被国内外学者称为“全新的、理想的、划时代的混凝土”。然而,我国水下不分散混凝土整体技术与国外先进技术相比还存在一定差距,主要是施工性能差、配套施工技术落后、整体强度偏低以及耐久性相对差。
施工性能差的重要原因是对水下混凝土抗分散性能影响因素的系统研究较少。抗分散性研究既要考虑混凝土组成材料、抗分散剂自身组成影响因素,还需考虑施工方法和施工环境影响。现有的《水下不分散混凝土施工规范》中对混凝土抗分散性能的评价是在静水环境下测试分析,适合于静水环境下混凝土的抗分散性与实际环境施工的高压或者高水流速环境要求有较大差距,建立动水作用下混凝土抗分散性能的评价方法、指标以及开发新型高效抗分散剂尤为重要。抗分散混凝土的试配、调整以及一系列宏观测试工作量大、周期长,建立水下不分散混凝土性能预测模型是未来的发展趋势。本文从上述存在问题的四个方面进行了综述,并对水下不分散混凝土未来的研究重点进行了展望。
其中为适应动水环境施工,新型抗分散剂及其抗分散机理方面:对于由水玻璃和黄原胶絮凝剂组成的高效抗分散剂,因黄原胶结构中的羟基和羧基与水泥颗粒中的Ca2+、Fe3+、Al3+形成化学配位键,将水化产物连接在一起,与纤维素对水泥粒子的物理吸附效应相比,浆液的抗分散性显著提高;纳米纤维素(CF)具有高比表面积和高宽比,在含量达到一定程度时可在空间上以三维尺度不断形成桥键,抗分散效果显著。
为提高水下混凝土的浇筑质量和抗分散能力,通过数理统计以及因子优化设计法建立了综合考虑胶凝材料含量、水胶比、砂胶比、抗分散剂和高效减水剂浓度等参数的数学模型,可直接预测水下混凝土坍落度、流动度、冲刷质量损失以及抗压强度发展;通过砂子取代混凝土中的粗骨料,所用砂子的表面积与粗骨料表面积相等的方法,建立了统计回归模型,该模型可预测混凝土抗冲刷损失以及所能承受的临界水压。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙国文
王朋硕
张营
闫娜
关键词:  水下不分散混凝土  抗分散剂  抗分散机理  抗分散性测试  抗分散性性能模型    
Abstract: The anti-washout underwater concrete can be directly poured in water, which is not easy to disperse and segregate, and has almost no pollution to the construction environment. It is called “new, ideal and epoch-making concrete” by domestic and foreign scholars. However, compared with foreign advanced technology, there is still a certain gap in the overall technology of anti-washout underwater concrete in China, mainly due to poor construction performance and backward supporting construction technology, resulting in low overall strength and poor durability.
The important reason for the poor construction performance is that there are few systematic studies on the factors influencing the anti-washout ability of underwater concrete. The study of anti-washout ability should consider not only the influencing factors of the concrete composition mate-rials and the anti-washout admixtures itself, but also the construction method and environmental impact. The evaluation of anti-washout perfor-mance of concrete in the existing code for construction of anti-washout underwater concrete is tested and analyzed in the still water environment, which is suitable for the anti-dispersion of concrete in the still water environment and the high-pressure construction in the actual environment or there is a big gap in the environmental requirements of high water velocity, so it is particularly important to establish the evaluation methods and indicators of anti-washout ability of concrete under the action of dynamic water and develop new high-efficiency anti-washout admixture. The trial mix, adjustment and series of macro tests of anti-washout concrete have a large workload and a long period, so it is the future development trend to establish the performance prediction model of underwater anti-washout concrete. Therefore, this paper summarizes the four aspects of the above problems and looks forward to the future research focus of underwater anti-washout concrete.
Among them, in order to adapt to the dynamic water environment construction, the new anti-washout admixtures and its anti-washout mechanism: The high-efficiency anti-washout admixtures composed of water glass and xanthan gum flocculant, Ca2+, Fe3+, Al3+ form chemical coordination bonds to connect the hydration products. Compared with the physical adsorption effect of cellulose on cement particles, the anti-washout ability of the slurry is significantly improved; The high specific surface area and the ratio of height to width of nano cellulose (CF) can form bridge bond continuously in three dimensions when the content reaches a certain degree, and the anti dispersion effect is significant.
In order to improve the construction quality and anti-washout ability of underwater concrete, a mathematical model considering the content of cementitious material, the water binder ratio, the sand binder ratio, the anti dispersion agent and the concentration of superplasticizer is established by mathematical statistics and factor optimization design method, which can directly predict the slump, fluidity, erosion quality loss and the deve-lopment of compressive strength of underwater concrete. The surface area of sand is equal to the surface area of coarse aggregate. The statistical regression model can predict the critical water pressure that the concrete can bear and the loss of erosion resistance.
Key words:  anti-washout underwater concrete    anti-washout admixture    anti-washout mechanism    anti-washout test    anti-washout perfor-mance model
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金 (51778378)
作者简介:  孙国文,石家庄铁道大学材料科学与工程学院,教授,硕士研究生导师。2012年在东南大学材料科学与工程学院取得材料学博士学位,主要从事结构混凝土微结构的定量表征、侵蚀性介质在混凝土中多尺度传输理论以及水下不分散混凝土的应用基础研究。
引用本文:    
孙国文, 王朋硕, 张营, 闫娜. 水下不分散混凝土性能的研究进展[J]. 材料导报, 2021, 35(3): 3092-3103.
SUN Guowen, WANG Pengshuo, ZHANG Ying, YAN Na. Research Progress on Performance of Anti-washout Underwater Concrete. Materials Reports, 2021, 35(3): 3092-3103.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110200  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3092
1 Zhu W Q, Zhang Q L, Zhang S W.Building Structure,2008,29(S1),146(in Chinese).仲伟秋,张庆亮,张寿维.建筑结构学报,2008,29(S1),146.2 Jia S Q.Catheter perfusion non-dispersible underwater concrete research. Master's Thesis,Anhui University of Science and Technology,China,2015(in Chinese).贾少卿. 导管法灌注水下抗高分散型混凝土的研究.硕士学位论文,安徽理工大学,2015.3 Mailvaganam N P.Concrete Admixtures Handbook, Noyes Publications, USA, 1996.4 Kawai T.In: 5th International Congress on Polymers. Bringhton,1987,pp.24.5 GB/T 37990-2019. Anti-washout admixtures for underwater concrete. Standardization Administration, China,2019(in Chinese).GB/T 37990-2019.水下不分散混凝土絮凝剂,国家标准化管理委员会,2019.6 Khayat K H, Mikanovic N.Viscosity-enhancing admixtures and the rheology of concrete, Woodhead Publishing Limited,2011.7 Cano-Barrita P F D J, F.M. León-Martínez. Biopolymers with viscosity-enhancing properties for concrete, William Andrew Publishing, Boston,2016.8 Khayat K H.Materials Journal,1995,92(2),164.9 Nguyen V C, Tran Q T, Luong L T.In: The 3rd ACF International Conference-ACF/VCA. Malaysia,2008,pp.356.10 CRD-C61-89A, US Army Experiment Station, Vicksburg,1989,pp.1.11 Ye K.Research on high performance marine underwater concrete. Master's Thesis, Yangzhou University, China,2016(in Chinese).叶坤. 高性能海工水下不分散混凝土研究.硕士学位论文,扬州大学,2016.12 Rols S, Ambroise J, Pera J.Cement and Concrete Research,1999,29(2),261.13 Sakuta M, Yoshioka Y, Kaya T.Special Publication,1985,89,261.14 Zou W J.Preparation and properties of non-dispersible underwater concrete with Na-bentonite flocculant. Master's Thesis, Yantai University, China,2013(in Chinese).邹文静. 膨润土基水下不分散混凝土的研制及性质研究.硕士学位论文,烟台大学,2013.15 Liu J.The research on anit-washout admixture non-dispersible underwater concrete. Master's Thesis, Hunan University, China,2005(in Chinese).刘娟. 水下不分散混凝土抗分散剂的研究.硕士学位论文,湖南大学,2005.16 Khayat K H.Cement and Concrete Composites,1998,20(2-3),171.17 Kawai T, Okada T.Special Publication,1989,119,583.18 Sonebi M, Khayat K H.Materials Journal,1999,96(5),519.19 Assaad J J, Daou Y, Khayat K H.ACI Materials Journal,2009,106(6),529.20 Heniegal A M, Maaty A A E S, Agwa I S.Alexandria Engineering Journal,2015,54(2),183.21 Jasim A T, Ali M A.Kufa Journal of Engineering,2018,9(3),145.22 Rendell F.4 Methods of placing. Underwater concreting and repair, Halsted press,1994,pp.63.23 Zhang Q K., Ready-Mixed Concrete,2017(8),56(in Chinese).张奇奎. 商品混凝土,2017(8),56.24 Abdelgader H S, Najjar M F.In: International Conference on Sustainable Built Environment Infrastructures in Developing Countries. Algeria,2009,pp.315.25 DL/T 5117-2000L/T 5117-2000. Test code on non-dispersible underwater concrete, China Electric Power Press China, China,2000(in Chinese).DL/T 5117-2000L/T 5117-2000.水下不分散混凝土试验规程,中国电力出版社,2000.26 Assaad J J, Daou Y, Salman H.Construction Materials,2011,164(3),153.27 Cui W, Huang J, Song H, et al.Construction and Building Materials,2017,156,184.28 Song Z B.The research of viscosity-modifying admixture of concrete. Master's Thesis, Beijing University of Technology, China,2003(in Chinese).宋作宝. 混凝土增粘剂的研究.硕士学位论文,北京工业大学,2003.29 Ding Q J, He L Y, Liang Y B.Wuhan University of Technology,2014(38),501(in Chinese).丁庆军,何良玉,梁远博.武汉理工大学学报,2014(38),501.30 Lai Y Y, Zhang Q B, Tang J W.New Building Materials,2018,45(3),114(in Chinese).赖洋羿,张琦彬,唐军务.新型建筑材料,2018,45(3),114.31 Yamato T, Soeda M.Special Publication,1991,126,169.32 Bonzel J, Siebel E.Betontechnische Berichte,1977,66(1),1.33 Khayat K H.Materials Journal,1995,92(6),625.34 Moon H Y, Shin K J.Construction & Building Materials,2007,21(1),98.35 Wang J J.Study on properties of non-dispersible underwater concrete. Master's Thesis, Dalian Jiaotong University, China,2015(in Chinese).王进京. 水下不分散混凝土性能研究.硕士学位论文,大连交通大学,2015.36 Khayat K H, Guizani Z.Materials Journal,1997,94(4),332.37 Assaad J J, Issa C A.Materials and Structures,2013,46(10),1613.38 Wang G D.The research of viscosity-modifying admixture on the property of concrete. Master's Thesis, Beijing University of Civil Engineering and Architecture, China,2013(in Chinese).王国栋. 增粘剂对混凝土性能的影响研究.硕士学位论文,北京建筑大学,2013.39 Li S, Zhang J, Li Z, et al.Construction and Building Materials,2019,224,66.40 Lee J H, Cho J W, Do J N, et al.Key Engineering Materials,2017,744,207.41 Song B D, Park B G, Choi Y, et al.Construction and Building Mate-rials,2017,144,74.42 Pei R, Liu J, Wang S.Cement and Concrete Composites,2015,55,186.43 Grzeszczyk S, Jurowski K, Bosowska K, et al.Construction and Building Materials,2019,203,670.44 Hisseine O A, Basic N, Omran A F, et al.Cement and Concrete Compo-sites,2018,94,327.45 Lin X, Xu H B, Zhou W.Concrete,2003(4),25(in Chinese).林鲜,徐海彬,周伟.混凝土,2003(4),25.46 Jiang C S, Chen J, Lv L N.Wuhan University of Technology (Transportation Science & Engineering),2004,28(3),353(in Chinese).姜从盛,陈江,吕林女,等.武汉理工大学学报:交通科学与工程版,2004,28(3),353.47 Sonebi M, Tamimi A K, Bartos P J M.Materials & Structures,2000,33(5),317.48 Assaad J J, Daou Y, Harb J.Journal of Materials in Civil Engineering,2010,23(7),1094.49 Assaad J J, Daou Y, Salman H.Journal of the South African Institution of Civil Engineering,2011,106(6),529.50 El-Chabib H, Nehdi M, Sonebi M.Materials Journal,2003,100(2),165.
[1] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[2] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[3] 王尚伟, 朱海堂, 王博, 寇磊. 混凝土配合比优化设计的紧密堆积理论综述[J]. 材料导报, 2021, 35(3): 3085-3091.
[4] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[5] 钱珊珊, 姚燕, 王子明, 崔素萍, 刘晓, 郑春扬. 降低高强混凝土黏度的减水剂制备与机理研究[J]. 材料导报, 2021, 35(2): 2046-2051.
[6] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[7] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[8] 王长龙, 张凯帆, 左伟, 叶鹏飞, 赵高飞, 任真真, 林庚. 煤矸石粉煤灰加气混凝土的制备及性能[J]. 材料导报, 2020, 34(24): 24034-24039.
[9] 董瑞鑫, 申向东, 薛慧君, 刘倩. 干湿循环作用下风积沙混凝土的抗硫酸盐侵蚀机理[J]. 材料导报, 2020, 34(24): 24040-24044.
[10] 黄守刚, 陈进杰, 王建西, 孙国文. 多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构[J]. 材料导报, 2020, 34(24): 24045-24054.
[11] 张少辉, 王艳, 牛荻涛. 废旧纤维在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(23): 23042-23050.
[12] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[13] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[14] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[15] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed