Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24040-24044    https://doi.org/10.11896/cldb.19070022
  无机非金属及其复合材料 |
干湿循环作用下风积沙混凝土的抗硫酸盐侵蚀机理
董瑞鑫, 申向东, 薛慧君, 刘倩
内蒙古农业大学水利与土木建筑工程学院,呼和浩特010018
Sulfate Resistance Mechanism of Aeolian Sand Concrete Under Dry-Wet Cycles
DONG Ruixin, SHEN Xiangdong, XUE Huijun, LIU Qian
School of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University,Hohhot 010018, China
下载:  全 文 ( PDF ) ( 5280KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选取内蒙古自治区乌兰布和沙漠的风积沙作为细骨料,用40%的风积沙替代部分河砂,采用核磁共振技术对风积沙混凝土的孔隙结构特征进行测试分析,利用扫描电子显微镜观察风积沙混凝土的微观形貌,并用X射线衍射技术分析混凝土的物相成分。研究表明:质量损失率在干湿循环60次时出现“拐点”,风积沙混凝土和普通混凝土的抗压耐蚀系数分别降低到84%、87%;风积沙组谱面积是普通组的1.59~2.76倍,风积沙混凝土最大孔隙减小了34.1%,普通组最大孔隙减小了29.3%;风积沙混凝土和普通混凝土中无害孔的占比均不超过10%,孔隙度都与自由流体饱和度的变化成正比,混凝土内部存在着小孔隙向大孔隙演变的特性;风积沙混凝土和普通混凝土干湿循环120次对比干湿循环0次均出现了较多的CaSO4·2H2O衍射峰,腐蚀结晶物多为硫酸盐和碳酸盐;风积沙组的水泥浆体出现18~36 μm的细长裂缝,普通组出现大量AFt。研究成果可为混凝土耐久性和盐侵环境下的工程建筑提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董瑞鑫
申向东
薛慧君
刘倩
关键词:  风积沙混凝土  硫酸盐干湿循环  孔隙特征  盐蚀产物  侵蚀机理    
Abstract: In this study, the aeolian sand of the Ulan Buh Desert in Inner Mongolia Autonomous Region was selected as the fine aggregate. In addition, 40% aeolian sand was used to replace a portion of the river sand, the pore structure characteristics of aeolian sand concrete were tested and analyzed by means of NMR technology, and the micro morphology and phase composition of aeolian sand concrete were observed and analyzed using SEM and X-ray diffraction technology. As shown by the results, after 60 dry-wet cycles the mass loss rate reaches an "inflection point", in which case the compressive and corrosion resistance coefficients of the aeolian sand concrete and ordinary concrete respectively decrease to 84% and 87%. Additionally, the spectral area of the aeolian sand concrete is 1.59—2.76 times of that of the ordinary concrete, while the maximum porosity of the aeolian sand concrete is reduced by 34.1%, and the maximum porosity of the ordinary concrete is reduced by 29.3%. The proportion of harmless pores in the aeolian sand concrete and ordinary concrete is less than 10%, and the porosity is in direct proportion to the change rule of free fluid saturation, while a characteristic of small pores evolving into large pores in the concrete is present. There are a greater number of CaSO4·2H2O diffraction peaks in both the aeolian sand concrete and ordinary concrete after 120 dry-wet cycles compared with 0 dry-wet cycles, and the corrosion crystals are mostly sulfate and carbonate. Long and thin cracks 18—36 μm in length appear in the cement paste of the aeolian sand concrete, and a large number of AFt are found in the ordinary concrete. The above research results provide a theoretical reference for research regarding the durability of concrete and engineering construction in salt erosion environments.
Key words:  aeolian sand concrete    sulfate dry-wet cycle    pore characteristics    salt erosion products    erosion mechanism
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51769025;51569021);内蒙古自然科学基金(2020BS05008)
通讯作者:  ndsxd@163.com   
作者简介:  董瑞鑫,2017年6月毕业于河北农业大学,获得学士学位。于2017年9月至今在内蒙古农业大学学习,主要从事新型建筑材料和混凝土耐久性的研究。
申向东,内蒙古力学学会副理事长,教授,博士研究生导师,内蒙古农业大学土木工程学科主任。1978—1982年,原内蒙古农牧学院,获学士学位;1989—1990年,河海大学学习工程力学课程;主要从事新型建筑材料和混凝土耐久性研究,重点研究新材料与新结构体系、混凝土耐久性等。发表论文180余篇,其中SCI/EI收录35篇。
引用本文:    
董瑞鑫, 申向东, 薛慧君, 刘倩. 干湿循环作用下风积沙混凝土的抗硫酸盐侵蚀机理[J]. 材料导报, 2020, 34(24): 24040-24044.
DONG Ruixin, SHEN Xiangdong, XUE Huijun, LIU Qian. Sulfate Resistance Mechanism of Aeolian Sand Concrete Under Dry-Wet Cycles. Materials Reports, 2020, 34(24): 24040-24044.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070022  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24040
1 Yu H F, Sun W, Wu W F, et al. Journal of the Chinese Ceramic Society, 2003(8), 763 (in Chinese).
余红发, 孙伟, 武卫锋, 等.硅酸盐学报, 2003(8), 763.
2 Zhang P X, Zhang B Z, Tang Y, et al. Natural resources of salt lakes in China and their development and utilization, Science Press, China, 1999 (in Chinese).
张彭熹, 张保珍, 唐渊, 等. 中国盐湖自然资源及其开发利用, 科学出版社, 1999.
3 Zhang R, Wu L G.Evaluation and management of groundwater resource, Tongji University Press, China, 1997(in Chinese).
张瑞, 吴林高. 地下水资源评价及管理, 同济大学出版社, 1997.
4 Clifton J R, Knab L I. Service life of concrete, Nuclear Regulatory Commission, USA, 1989.
5 Cody R D, Cody A M, Spry P G, et al. Reduction of concrete deterioration by ettringite using crystal growth inhibition techniques. Ph. D. Thesis, Iowa State University, USA, 2001.
6 Ye H, Jin X, Fu C, et al. Construction and Building Materials, 2016, 112, 457.
7 Li Y Q, Ba M F, Liu J Z, et al. Acta Materiae Compositae Sinica, 2017, 34(12), 2856(in Chinese).
李永强, 巴明芳, 柳俊哲, 等. 复合材料学报, 2017, 34(12), 2856.
8 Wu J C, Shen X D, Dong W, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(10), 2845(in Chinese).
吴俊臣, 申向东, 董伟, 等.硅酸盐通报, 2015, 34(10), 2845.
9 Ameta N K, Wayal A S, Hiranandani P. American Journal of Engineering Research, 2013 ,2(9),133.
10 Maria G M Elipe, Susana Lopez-Querol. Construction and Building Materials, 2014, 73, 728.
11 Duan Hanchen, Wang Tao, Xue Xian, et al. Environmental Monitoring and Assessment, 2014, 186, 6083.
12 Xue H J, Shen X D, Wang R Y, et al.Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(18), 118 (in Chinese).
薛慧君, 申向东, 王仁远, 等.农业工程学报, 2017, 33(18), 118.
13 Zou Y X, Shen X D, Li G F, et al. Journal of Building Materials, 2018, 21(5), 817 (in Chinese).
邹欲晓, 申向东, 李根峰, 等.建筑材料学报, 2018, 21(5), 817.
14 El-Sayed Sedek Abu Seif. Arabian Journal of Geosciences, 2011, 6(3), 857.
15 Luo F J, He L, Pan Z, et al. Construction and Building Materials, 2013, 47(5), 131.
16 Li Y G, Ma X L, Hu D W, et al.Bulletin of the Chinese Ceramic Society, 2017, 36(6), 2128 (in Chinese).
李玉根, 马小莉, 胡大伟, 等.硅酸盐通报, 2017, 36(6), 2118.
17 Li G F, Shen X D, Wu J C, et al.Bulletin of the Chinese Ceramic Society, 2016, 35(4), 1213 (in Chinese).
李根峰, 申向东, 吴俊臣, 等.硅酸盐通报, 2016, 35(4), 1213.
18 Shen X D, Zou Y X, Xue H J, et al. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2), 161 (in Chinese).
申向东, 邹欲晓, 薛慧君, 等.农业工程学学报, 2019, 35(2),161.
19 Wu J C, Shen X D. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10), 184 (in Chinese).
吴俊臣, 申向东.农业工程学报, 2017, 33(10), 184.
20 Dong Wei, Shen Xiangdong, Xue Huijun,et al. Construction and Buil-ding Materials, 2016, 123, 792.
21 普通混凝土力学性能试验方法标准:GB/T 50081-2002,中国建筑工业出版社, 2003.
22 普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082-2009,中国建筑工业出版社, 2009.
23 Tyrologou P, Dudeney A W L, Grattoni C A. Magnetic Resonance Imaging, 2005, 23(6),765.
24 Li J L, Zhou K P, Zhang Y M, et al.Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6), 1208 (in Chinese).
李杰林, 周科平, 张亚民, 等.岩石力学与工程学报, 2012, 31(6), 1208.
25 Wu Z W, Lian H Z.High performance concrete, Railway Press, China, 2005(in Chinese).
吴中伟, 廉慧珍. 高性能混凝土, 中国铁道出版社, 2005.
26 Qian J S, Yu J C, Sun H Q, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1569 (in Chinese).
钱觉时, 余金城, 孙化强, 等.硅酸盐学报, 2017, 45(11), 1569.
[1] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思. 干湿循环与风沙吹蚀作用下风积沙混凝土的抗硫酸盐耐久性[J]. 材料导报, 2020, 34(20): 20053-20060.
[2] 孙道胜, 王辉, 刘开伟, 王爱国, 李萍, 张高展, 管艳梅. 低湿度半浸泡环境下粉煤灰对砂浆试件硫酸盐侵蚀性能的影响[J]. 材料导报, 2020, 34(14): 14079-14086.
[3] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[4] 董越, 杨晓炳, 高谦. 基于图像法分析孔隙特征对加气充填砼性能的影响[J]. 材料导报, 2018, 32(18): 3128-3134.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed