Analysis on Ignition Characteristics of Spandex Anti-yellowing Agent Dust
LUO Zhenmin1,2,*, ZHANG Chunyan1, YANG Yong1
1 College of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China 2 Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi'an 710054, China
Abstract: In order to study the combustion characteristics of spandex anti-yellowing agent dust, a standard experimental device for the minimum ignition temperature of dust cloud and a simultaneous thermal analysis technique were used to study the distribution characteristics of the minimum ignition temperature of dust cloud (MITC) and pyrolysis characteristics of anti-yellowing agent HN-150. The results show that: the smaller the dust particle size, the lower the MITC; the dust spray pressure increases, the MITC rises; the dust cloud concentration increases, the MITC first decreases and then stabilizes, and when the dust mass concentration is greater than 2 096 g/m3, the MITC are stable at 270 ℃, and when it is less than 150 g/m3, no fire occurs. With the increase of particle size, the ignition temperature, peak temperature and combustion temperature of dust show an increasing trend, and the maximum burning rate, average burning rate, flammability index and comprehensive combustion characteristics index show a decreasing trend; with the increase of heating rate, the combustion characteristics parameters of dust all show an increasing trend. As the particle size decreases, the average activation energy of the dust decreases, and the more prone to combustion. MITC and the ignition temperature in the pyrolysis process have a corresponding relationship, which is consistent with the results of combustion characteristics and thermal analysis kinetics. The ignition temperature of MITC and pyrolysis process is consistent with the results of combustion characteristics and thermal kinetics analysis. Therefore, this basic study can provide a reference basis for the safe production of anti-yellowing agent.
1 Wang Q H, Fang X, Li Z H. Journal of Safety Science and Technology, 2020, 16(9), 89 (in Chinese). 王秋红, 方向, 李州昊. 中国安全生产科学技术, 2020, 16(9), 89. 2 Wang Q H, Yuan S, Wei Y M, et al. Explosion and Shock Waves, 2019, 39(5), 146 (in Chinese). 王庆慧, 袁帅, 卫园梦, 等. 爆炸与冲击, 2019, 39(5), 146. 3 Eckhoff R K. Journal of Loss Prevention in the Process Industries, 2019, 59, 63. 4 Sun H, Wang Z Q, Zhang Q. Journal of Loss Prevention in the Process Industries, 2020, 68, 104305. 5 Li C, Yuan C M, Li G. Industrial Safety and Environmental Protection, 2013, 39(3), 19 (in Chinese). 李畅, 苑春苗, 李刚. 工业安全与环保, 2013, 39(3), 19. 6 Eckhoff R K. Process Safety and Environmental Protection, 2019, 129, 17. 7 Luo Z M, Zhang M, Hao Q Q, et al. Journal of Safety Science and Technology, 2020, 16(3), 55 (in Chinese). 罗振敏, 张蔓, 郝强强, 等. 中国安全生产科学技术, 2020, 16(3), 55. 8 Wu D J, Norman F, Verplaetsen F, et al. Journal of Hazardous Materials, 2016, 307, 274. 9 Liu T Q. Journal of Safety and Environment, 2020, 20(4), 1334 (in Chinese). 刘天奇. 安全与环境学报, 2020, 20(4), 1334. 10 Wang Q H, Fang X, Shu C M, et al. Journal of Loss Prevention in the Process Industries, 2020, 64, 104076. 11 Deng J, Qu J, Wang Q H, et al. Process Safety and Environmental Protection, 2019, 129, 176. 12 Mishra D P, Azam S. Fuel, 2018, 227(11), 424. 13 Pang L, Ma R, Gao J C, et al. Journal of Safety Science and Technology, 2017, 13(5), 5 (in Chinese). 庞磊, 马冉, 高建村, 等. 中国安全生产科学技术, 2017, 13(5), 5. 14 Zheng Q Y, Liu L, Liu T Q, et al. China Plastics Industry, 2021, 49(4), 97 (in Chinese). 郑秋雨, 刘琳, 刘天奇, 等. 塑料工业, 2021, 49(4), 97. 15 Cui Z W, Zhou X H, Zhou H D, et al. China Wood Industry, 2019, 33(2), 11 (in Chinese). 崔忠文, 周曦禾, 周捍东, 等. 木材工业, 2019, 33(2), 11. 16 Zhao J P, Wang H W. China Safety Science Journal, 2017, 27(12), 26 (in Chinese). 赵江平, 万杭炜. 中国安全科学学报, 2017, 27(12), 26. 17 Cao W G, Zheng J J, Peng Y H, et al. Explosive Materials, 2016, 45(1), 1 (in Chinese). 曹卫国, 郑俊杰, 彭于怀, 等. 爆破器材, 2016, 45(1), 1. 18 Zhang J F, Liu X, Wang Y W, et al. Procedia Engineering, 2014, 84, 467. 19 Singh R K, Pandey D, Patil T, et al. Bioresource Technology, 2020, 310, 123464. 20 Wang Q H, Ma C, Liu Z, et al. Journal of Xi'an University of Science and Technology, 2022, 42(1), 22 (in Chinese). 王秋红, 马超, 刘著, 等. 西安科技大学学报, 2022, 42(1), 22. 21 Zheng Q X, Liu X C, Wu T W, et al. Journal of Fuel Chemistry and Technology, 2022, 50(6), 747 (in Chinese). 郑泉兴, 刘秀彩, 吴添文, 等. 燃料化学学报, 2022, 50(6), 747. 22 Liang R, Liang Q Y, Li Z B, et al. Journal of Loss Prevention in the Process Industries, 2021, 69, 104380. 23 Xi Z L, Wang X D, Li M T, et al. Combustion Science and Technology, 2020, 193(9), 1. 24 Chen X K, Ma T, Zhai X W, et al. Thermochimica Acta, 2019, 676, 84. 25 Zhang Y, Zhao Y M, Tan Y X, et al. Explosive Materials, 2021, 50(6), 37 (in Chinese). 张云, 赵懿明, 谭迎新, 等. 爆破器材, 2021, 50(6), 37. 26 Huang C Y, Yuan B H, Zhao Q, et al. Journal of Changzhou University (Natural Science Edition), 2020, 32(1), 8 (in Chinese). 黄楚原, 袁必和, 赵齐, 等. 常州大学学报(自然科学版), 2020, 32(1), 8. 27 Zhou J P, Shi Y. Journal of Safety Science and Technology, 2019, 15(2), 39 (in Chinese). 赵江平, 史源. 中国安全生产科学技术, 2019, 15(2), 39. 28 Guan W L, Zhao J Z, Dong C J. Industrial Safety and Environmental Protection, 2021, 47(2), 43 (in Chinese). 关文玲, 赵健章, 董呈杰. 工业安全与环保, 2021, 47(2), 43. 29 Lu H Y, Tian Y J, Xu D P. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 2017, 40(1), 1. 30 Wang G W, Zhang J L, Chang W W, et al. Energy, 2018, 147, 25. 31 Yang G S, Yang Z H, Zhang J L, et al. High Temperature Materials and Processes, 2019, 38(2019), 783. 32 Liu H, Wu S H, Zhao G B, et al. Journal of Harbin Institute of Techno-logy, 2008(3), 419 (in Chinese). 刘辉, 吴少华, 赵广播, 等. 哈尔滨工业大学学报, 2008(3), 419. 33 Yang Z B, Ma Y, Dai X, et al. Electric Power Science and Engineering, 2015, 31(3), 1 (in Chinese). 杨志斌, 马莹, 戴新, 等. 电力科学与工程, 2015, 31(3), 1. 34 Zhang J P, Wang C A, Jia X W, et al. Journal of Chemical Industry and Engineering(China), 2018, 69(8), 3611 (in Chinese). 张锦萍, 王长安, 贾晓威, 等. 化工学报, 2018, 69(8), 3611. 35 Wen H Y, Zhang Y M, Ji D X, et al. Journal of Chemical Industry and Engineering(China), 2020, 71(2), 755 (in Chinese). 温宏炎, 张玉明, 纪德馨, 等. 化工学报, 2020, 71(2), 755. 36 Wang Y C, Zhao J P, Wang Y J, et al. Chemical Industry and Enginee-ring Progress, 2018, 37(5), 1774 (in Chinese). 王亚超, 赵江平, 王玉娇, 等. 化工进展, 2018, 37(5), 1774. 37 Hong C, Yang Q, Wang Z Q, et al. Journal of Chemical Industry and Engineering(China), 2017, 68(1), 360 (in Chinese). 洪晨, 杨强, 王志强, 等. 化工学报, 2017, 68(1), 360. 38 Naidu M R, Kumar G P. Fuel, 2021, 303, 121285. 39 An M, Guo Q J. Atmosphere, 2022, 13(9), 1480. 40 Merdun H, Laougé Z B. Renewable Energy, 2021, 163, 453. 41 Li C. Research on the oxygen dust explosion characteristics and thermal decomposition. Master's Thesis, North University of China, China, 2018 (in Chinese). 李陈. 奥克托今粉尘爆炸特性及其热分解研究. 硕士学位论文, 中北大学, 2018. 42 Doyle C D. Macromolecular Chemistry and Physics, 1964, 80(1), 220.