Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21090293-8    https://doi.org/10.11896/cldb.21090293
  高分子与聚合物基复合材料 |
农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展
桂叶1, 黄雪刚1, 刘洋1,*, 李博文1, 谭春玲1, 张峻源1, 仇浩2
1 昆明理工大学环境科学与工程学院,云南省土壤固碳与污染控制重点实验室,昆明 650500
2 上海交通大学环境科学与工程学院,上海 200240
Research Progress on Human Cytotoxicity of Aerosol Formed During the Pyrolysis of Agroforestry Biomass
GUI Ye1, HUANG Xuegang1, LIU Yang1, *, LI Bowen1, TAN Chunling1, ZHANG Junyuan1, QIU Hao2
1 Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 4384KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 农林生物质作为潜在的能源物质,对其固体残留物进行简单处理后可用于能源供应、土壤改良及污染控制,具有较大的经济与环境利用价值。然而,研究表明农林生物质在热解时生成和释放的气溶胶中含有重金属、环境持久性自由基(EPFRs)、多环芳烃(PAHs)、硫氧化物(SOX)、焦油、颗粒物等物质,这些物质与人体接触或被吸入后会通过氧化应激及与生物大分子形成加合物等途径对人体多组织细胞造成损伤,进而威胁人体健康。大量的回收和不当处置农林生物质残渣也会对作业人员产生不可逆的伤害。因此,本文综述了农林生物质热解生成气溶胶的毒性机制,系统梳理了不同种类的农林生物质及热解条件对生成的气溶胶组分的影响,重点关注颗粒物粒径及颗粒物吸附的污染物对气溶胶毒性的贡献,以期对未来农林生物质的科学应用及控制提供理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
桂叶
黄雪刚
刘洋
李博文
谭春玲
张峻源
仇浩
关键词:  农林生物质  热解  气溶胶  影响因素  人体细胞  毒性    
Abstract: As a potential energy material, agroforestry biomass can be used for energy supply, soil improvement and pollution control after simple treatments of its solid residues. This endows agroforestry biomass with great economic and environmental utilization value. However, some stu-dies show that aerosols may contain heavy metals, environmental persistent free radicals (EPFRs), polycyclic aromatic hydrocarbons (PAHs), sulfur oxides (SOX), tar, particulate matter and other substances during pyrolysis of agroforestry biomass. After contacting or being inhaled by human body, the above substances will cause damage to human cells or tissues through oxidative stresses and the formation of adducts with biological macro-molecules, and then threaten human health. A large number of recycling and improper disposal of agroforestry biomass residues will also cause irreversible damage to operators. Therefore, this paper summarizes the toxicity mechanism of aerosols generate by pyrolysis of agroforestry biomass, systematically investigates the effects of different types of agroforestry biomass under various pyrolysis conditions on the components of aerosols, and focuses on the contributions. The findings will provide a theoretical basis for the scientific application and control of agrofo-restry biomass in the near future.
Key words:  agroforestry biomass    pyrolysis    aerosol    influencing factor    human cell    toxicity
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  X511  
基金资助: 国家自然科学基金(41967039);云南省基础研究优秀青年项目(202201AW070006);云南省万人计划青年拔尖项目(YNWR-QNBJ-2019-065);云南省基础研究专项面上项目(202001AT070042)
通讯作者:  *刘洋,昆明理工大学环境科学与工程学院副教授、硕士研究生导师。2009年7月本科毕业于中国农业大学水利与土木工程学院农业建筑环境与能源工程系,2011年6月取得中国农业大学水利与土木工程学院农业建筑环境与能源工程系硕士学位,2015年在荷兰莱顿大学理学院环境科学系获得博士学位。主要从事污染物生态毒性效应评价与预测、混合污染物毒性作用机理、纳米材料的环境行为及健康风险评价、天然有机质与污染物的相互作用、生物炭中自由基的生物效应方向的研究。近年来在环境科学领域发表文章41篇,包括Environmental Science & Technology、Environmental Pollution、Water Research、Chemosphere、Frontiers of Environmental Science & Engineering等国内外知名期刊。minipig6@163.com   
作者简介:  桂叶,2020年6月毕业于安徽理工大学,获得工学学士学位。现为昆明理工大学环境科学与工程学院硕士研究生,在刘洋副教授的指导下进行研究。目前主要研究领域为生物炭对莱茵衣藻及其解磷能力的影响。
引用本文:    
桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
GUI Ye, HUANG Xuegang, LIU Yang, LI Bowen, TAN Chunling, ZHANG Junyuan, QIU Hao. Research Progress on Human Cytotoxicity of Aerosol Formed During the Pyrolysis of Agroforestry Biomass. Materials Reports, 2023, 37(10): 21090293-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090293  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21090293
1 Chen W H, Shi X X. Modern Agricultural Science and Technology, 2017(18), 148 (in Chinese).
陈卫红, 石晓旭. 现代农业科技, 2017(18), 148.
2 Li Y, Zhou J. Advanced Materials Research, 2012, 374-377, 146.
3 Vassilev S V, Baxter D, Andersen L K, et al. Fuel, 2012, 94, 1.
4 Cai J, Zeng X Y, Zhi G R, et al. Atmospheric Chemistry and Physics, 2020, 20(10), 6115.
5 Trubetskaya A, Jensen P A, Jensen A D, et al. Fuel Processing Techno-logy, 2016, 143, 118.
6 Lynch I, Dawson K A. Nano Today, 2008, 3(1-2), 40.
7 Schmidt G, Trouve G, Leyssens G, et al. Fuel Processing Technology, 2018, 174, 104.
8 Moorthy B, Chu C, Carlin D J. Toxicological Sciences, 2015, 145(1), 5.
9 Houshfar E, Wang L, Vaha-Savo N, et al. Clean Technologies and Environmental Policy, 2014, 16(7), 1339.
10 Yu W, Jin H F, Tang C S, et al. British Journal of Pharmacology, 2018, 175(8), 1114.
11 Li N, Sioutas C, Cho A, et al. Environmental Health Perspectives, 2003, 111(4), 455.
12 Yang J Y, Kim J Y, Jang J Y, et al. Environmental Health and Toxicology, 2013, 28, 32.
13 Barton R G, Clark W D, Seeker W R. Combustion Science and Technology, 1990, 74(1-6), 327.
14 Shang P P, Sheng K C, Liu J L, et al. Renewable Energy Resources, 2020, 38(3), 285(in Chinese).
尚鹏鹏, 盛奎川, 刘蒋龙, 等. 可再生能源, 2020, 38(3), 285.
15 Lievens C, Yperman J, Vangronsveld J, et al. Fuel, 2008, 87(10-11), 1894.
16 Taner S, Pekey B, Pekey H. Science of the Total Environment, 2013, 454, 79.
17 Liao S H, Pan B, Li H, et al. Environmental Science & Technology, 2014, 48(15), 8581.
18 Wang P, Pan B, Li H, et al. Environmental Science & Technology, 2018, 52(3), 1054.
19 Maskos Z, Khachatryan L, Dellinger B. Energy & Fuels, 2013, 27(9), 5506.
20 Matamba T, Tahmasebi A, Rish S K, et al. Fuel Processing Technology, 2021, 213, 106645.
21 Zhang L Q, Li S S, Yang Z D, et al. Biomass Conversion and Biorefi-nery, 2023, 13, 3871.
22 Dieguez-Alonso A, Anca-Couce A, Zobel N, et al. Fuel, 2015, 153, 102.
23 Zhou H, Wu C F, Onwudili J A, et al. Energy & Fuels, 2014, 28(10), 6371.
24 Zhang M M, Buekens A, Li X D. Waste and Biomass Valorization, 2017, 8(1), 1.
25 Chen Z L, Lin X Q, Lu S Y, et al. Chemosphere, 2018, 208, 862.
26 Gao Q J, Cieplik M K, Budarin V L, et al. Chemosphere, 2016, 150, 168.
27 Guo F Q, Jia X P, Liang S, et al. Bioresource Technology, 2020, 298, 122263.
28 Guo S, Wei X, Che D Y, et al. Frontiers in Energy, 2021, 15(2), 374.
29 Zhai M, Wang X Y, Zhang Y, et al. International Journal of Hydrogen Energy, 2015, 40(34), 10780.
30 Obaidullah M, Bram S, Verma V K, et al. International Journal of Renewable Energy Technology, 2016, 2(1), 147.
31 Chang Q H, Gao R, Li H J, et al. Fuel, 2018, 216, 538.
32 Hu B, Zhang B, Xie W L, et al. Energy & Fuels, 2020, 34(9), 10384.
33 Hu W J, Zhen B Y, He L, et al. Biomass Chemical Engineering, 2012, 46(4), 5 (in Chinese).
胡文静, 郑冰漪, 何亮, 等. 生物质化学工程, 2012, 46(4), 5.
34 Liu H, Zhang Q, Hu H Y, et al. International Journal of Hydrogen Energy, 2014, 39(3), 125.
35 Zyl L V, Tryner J, Bilsback K, et al. Environmental Science & Technology, 2019, 53(8), 4648.
36 Deng L, Torres-Rojas D, Burford M, et al. Applied Energy, 2018, 215, 13.
37 Damoe A J, Jensen P A, Frandsen F J, et al. Energy & Fuels, 2017, 31(1), 555.
38 Matamba T, Tahmasebi A, Rish S K, et al. Energy & Fuels, 2020, 34(3), 3346.
39 Uddin M N, Techato K, Taweekun J, et al. Energies, 2018, 11(11), 3115.
40 Liu R, Deng C, Wang J. Energy Sources, 2009, 32(1), 10.
41 Wang X B, Bai S J, Jin Q M, et al. Journal of Analytical and Applied Pyrolysis, 2018, 134, 484.
42 Zhang Y. Clinical and Translational Medicine, 2018, 7(1), 34.
43 Tian S Q. Study on the injury of pulmonary bronchial epithelial cells (BEAS-2B) induced by three typical heavy metals and the inhibitory effect of polyphenols. Ph. D. Thesis, Liaoning University, China, 2020(in Chinese).
田思琪. 三种典型重金属诱导肺支气管上皮细胞(BEAS-2B)损伤及多酚类化合物毒性抑制作用研究. 硕士学位论文, 辽宁大学, 2020.
44 Guo H R, Liu H, Wu H B. International Journal of Molecular Sciences, 2019, 20(19), 4690.
45 Voitkun V, Zhitkovich A, Costa M. Nucleic Acids Research, 1998, 26(8), 2024.
46 Truong H, Lomnicki S, Dellinger B. Environmental Science & Technology, 2010, 44(6), 1933.
47 Dellinger B, Pryor W A, Cueto R, et al. Chemical Research in Toxicology, 2001, 14(10), 1371.
48 Balakrishna S, Lomnicki S, McAvey K M, et al. Particle and Fibre Toxicology, 2009, 6, 11.
49 Abbas I, Badran G, Verdin A, et al. Environmental Chemistry Letters, 2018, 16(2), 439.
50 Li M C, Liu J Y, Zhou J Z, et al. Toxicology Letters, 2021, 351, 5.
51 Ye M, Liu B C, Du H J, et al. Hygiene Research, 2006(2), 135 (in Chinese).
叶萌, 刘秉慈, 杜宏举, 等. 卫生研究, 2006(2), 135.
52 Zhang Q, Meng Z. European Journal of Pharmacology, 2009, 602(1), 117.
53 Last J A, Sun W M, Witschi H. Environmental Health Perspectives, 1994, 102, 179.
54 Liu Y X, Du Q P, Meng Z Q. Acta Scientiae Circumstantiae, 2006, 26(9), 1520.
刘玉香, 杜青平, 孟紫强. 环境科学学报, 2006, 26(9), 1520.
55 Sorg O. Toxicology Letters, 2014, 230(2), 225.
56 Hwang H J, Dornbos P, Steidemann M, et al. Toxicology and Applied Pharmacology, 2016, 304, 121.
57 Novelli M, Beffy P, Masini M, et al. Chemosphere, 2021, 265, 129103.
58 Li C S, Suzuki K. Resources Conservation and Recycling, 2010, 54(11), 905.
59 Pardo M, Li C, Fang Z, et al. Chemical Research in Toxicology, 2021, 34(6), 1588.
60 Zhu M T, Nie G J, Meng H, et al. Accounts of Chemical Research, 2013, 46(3), 622.
61 Dergham M, Lepers C, Verdin A, et al. Chemical Research in Toxicology, 2012, 25(4), 904.
62 Vertegel A A, Siegel R W, Dordick J S. Langmuir, 2004, 20(16), 6800.
63 Schnekenburger M, Talaska G, Puga A. Molecular and Cellular Biology, 2007, 27(20), 7089.
64 Viana M, Lopez J M, Querol X, et al. Atmospheric Environment, 2008, 42(8), 1941.
65 Wang F, Zhang M, Sha W, et al. Molecules, 2020, 25(8), 1827.
66 Degrendele C, Okonski K, Melymuk L, et al. Atmospheric Environment, 2014, 98, 410.
67 Shim I, Kim W, Kim H, et al. Toxics, 2021, 9(7), 167.
68 Tian D D, Yuan X Y, Zhou W, et al. Asian Journal of Ecotoxicology, 2015, 10(3), 288(in Chinese).
田冬冬, 苑晓燕, 周维, 等. 生态毒理学报, 2015, 10(3), 288.
[1] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[2] 黄雪刚, 刘洋, 李博文, 谭聪, 谭春玲, 宋兰, 仇浩. 三种热点工程颗粒材料的性质与环境行为和细胞毒性的关系[J]. 材料导报, 2023, 37(6): 21050141-8.
[3] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[4] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[5] 黄艳琴, 甄宇航, 王晨州, 宁晓阳, 刘兰岭, 李凯, 赵莉, 陆强. “双碳”背景下市政污泥热解资源化利用研究进展[J]. 材料导报, 2023, 37(10): 23020016-6.
[6] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[7] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[8] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[9] 周晶晶, 周军, 吴雷, 杨茸茸, 宋永辉, 张秋利. 生物质供氢体协助低变质煤加氢热解提质的研究进展[J]. 材料导报, 2022, 36(9): 20070237-8.
[10] 周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
[11] 向鑫, 杨飞龙, 张桂凯, 胡立, 宋雅琪, 朱力桂. 管件内壁电沉积涂层技术的研究进展[J]. 材料导报, 2022, 36(13): 20100118-7.
[12] 陈彪, 谭静, 付小航, 卢郁静, 朱玥玮, 黄晶, 狄雨萌, 丁延伟. 竹纸老化的热解特性及其老化程度的量化评价[J]. 材料导报, 2022, 36(13): 21040180-5.
[13] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[14] 文渊, 胡珊, 何浏伟. 硼泥碳化法制备碱式碳酸镁的工艺研究[J]. 材料导报, 2021, 35(Z1): 132-136.
[15] 杨小军, 池作和, 王进卿, 潜培豪, 王广鑫, 王杰. 玻璃粉对聚硅氮烷陶瓷涂层厚度及孔隙的影响[J]. 材料导报, 2021, 35(6): 6060-6064.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed