Research Progress on Human Cytotoxicity of Aerosol Formed During the Pyrolysis of Agroforestry Biomass
GUI Ye1, HUANG Xuegang1, LIU Yang1, *, LI Bowen1, TAN Chunling1, ZHANG Junyuan1, QIU Hao2
1 Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China 2 School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract: As a potential energy material, agroforestry biomass can be used for energy supply, soil improvement and pollution control after simple treatments of its solid residues. This endows agroforestry biomass with great economic and environmental utilization value. However, some stu-dies show that aerosols may contain heavy metals, environmental persistent free radicals (EPFRs), polycyclic aromatic hydrocarbons (PAHs), sulfur oxides (SOX), tar, particulate matter and other substances during pyrolysis of agroforestry biomass. After contacting or being inhaled by human body, the above substances will cause damage to human cells or tissues through oxidative stresses and the formation of adducts with biological macro-molecules, and then threaten human health. A large number of recycling and improper disposal of agroforestry biomass residues will also cause irreversible damage to operators. Therefore, this paper summarizes the toxicity mechanism of aerosols generate by pyrolysis of agroforestry biomass, systematically investigates the effects of different types of agroforestry biomass under various pyrolysis conditions on the components of aerosols, and focuses on the contributions. The findings will provide a theoretical basis for the scientific application and control of agrofo-restry biomass in the near future.
桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
GUI Ye, HUANG Xuegang, LIU Yang, LI Bowen, TAN Chunling, ZHANG Junyuan, QIU Hao. Research Progress on Human Cytotoxicity of Aerosol Formed During the Pyrolysis of Agroforestry Biomass. Materials Reports, 2023, 37(10): 21090293-8.
1 Chen W H, Shi X X. Modern Agricultural Science and Technology, 2017(18), 148 (in Chinese). 陈卫红, 石晓旭. 现代农业科技, 2017(18), 148. 2 Li Y, Zhou J. Advanced Materials Research, 2012, 374-377, 146. 3 Vassilev S V, Baxter D, Andersen L K, et al. Fuel, 2012, 94, 1. 4 Cai J, Zeng X Y, Zhi G R, et al. Atmospheric Chemistry and Physics, 2020, 20(10), 6115. 5 Trubetskaya A, Jensen P A, Jensen A D, et al. Fuel Processing Techno-logy, 2016, 143, 118. 6 Lynch I, Dawson K A. Nano Today, 2008, 3(1-2), 40. 7 Schmidt G, Trouve G, Leyssens G, et al. Fuel Processing Technology, 2018, 174, 104. 8 Moorthy B, Chu C, Carlin D J. Toxicological Sciences, 2015, 145(1), 5. 9 Houshfar E, Wang L, Vaha-Savo N, et al. Clean Technologies and Environmental Policy, 2014, 16(7), 1339. 10 Yu W, Jin H F, Tang C S, et al. British Journal of Pharmacology, 2018, 175(8), 1114. 11 Li N, Sioutas C, Cho A, et al. Environmental Health Perspectives, 2003, 111(4), 455. 12 Yang J Y, Kim J Y, Jang J Y, et al. Environmental Health and Toxicology, 2013, 28, 32. 13 Barton R G, Clark W D, Seeker W R. Combustion Science and Technology, 1990, 74(1-6), 327. 14 Shang P P, Sheng K C, Liu J L, et al. Renewable Energy Resources, 2020, 38(3), 285(in Chinese). 尚鹏鹏, 盛奎川, 刘蒋龙, 等. 可再生能源, 2020, 38(3), 285. 15 Lievens C, Yperman J, Vangronsveld J, et al. Fuel, 2008, 87(10-11), 1894. 16 Taner S, Pekey B, Pekey H. Science of the Total Environment, 2013, 454, 79. 17 Liao S H, Pan B, Li H, et al. Environmental Science & Technology, 2014, 48(15), 8581. 18 Wang P, Pan B, Li H, et al. Environmental Science & Technology, 2018, 52(3), 1054. 19 Maskos Z, Khachatryan L, Dellinger B. Energy & Fuels, 2013, 27(9), 5506. 20 Matamba T, Tahmasebi A, Rish S K, et al. Fuel Processing Technology, 2021, 213, 106645. 21 Zhang L Q, Li S S, Yang Z D, et al. Biomass Conversion and Biorefi-nery, 2023, 13, 3871. 22 Dieguez-Alonso A, Anca-Couce A, Zobel N, et al. Fuel, 2015, 153, 102. 23 Zhou H, Wu C F, Onwudili J A, et al. Energy & Fuels, 2014, 28(10), 6371. 24 Zhang M M, Buekens A, Li X D. Waste and Biomass Valorization, 2017, 8(1), 1. 25 Chen Z L, Lin X Q, Lu S Y, et al. Chemosphere, 2018, 208, 862. 26 Gao Q J, Cieplik M K, Budarin V L, et al. Chemosphere, 2016, 150, 168. 27 Guo F Q, Jia X P, Liang S, et al. Bioresource Technology, 2020, 298, 122263. 28 Guo S, Wei X, Che D Y, et al. Frontiers in Energy, 2021, 15(2), 374. 29 Zhai M, Wang X Y, Zhang Y, et al. International Journal of Hydrogen Energy, 2015, 40(34), 10780. 30 Obaidullah M, Bram S, Verma V K, et al. International Journal of Renewable Energy Technology, 2016, 2(1), 147. 31 Chang Q H, Gao R, Li H J, et al. Fuel, 2018, 216, 538. 32 Hu B, Zhang B, Xie W L, et al. Energy & Fuels, 2020, 34(9), 10384. 33 Hu W J, Zhen B Y, He L, et al. Biomass Chemical Engineering, 2012, 46(4), 5 (in Chinese). 胡文静, 郑冰漪, 何亮, 等. 生物质化学工程, 2012, 46(4), 5. 34 Liu H, Zhang Q, Hu H Y, et al. International Journal of Hydrogen Energy, 2014, 39(3), 125. 35 Zyl L V, Tryner J, Bilsback K, et al. Environmental Science & Technology, 2019, 53(8), 4648. 36 Deng L, Torres-Rojas D, Burford M, et al. Applied Energy, 2018, 215, 13. 37 Damoe A J, Jensen P A, Frandsen F J, et al. Energy & Fuels, 2017, 31(1), 555. 38 Matamba T, Tahmasebi A, Rish S K, et al. Energy & Fuels, 2020, 34(3), 3346. 39 Uddin M N, Techato K, Taweekun J, et al. Energies, 2018, 11(11), 3115. 40 Liu R, Deng C, Wang J. Energy Sources, 2009, 32(1), 10. 41 Wang X B, Bai S J, Jin Q M, et al. Journal of Analytical and Applied Pyrolysis, 2018, 134, 484. 42 Zhang Y. Clinical and Translational Medicine, 2018, 7(1), 34. 43 Tian S Q. Study on the injury of pulmonary bronchial epithelial cells (BEAS-2B) induced by three typical heavy metals and the inhibitory effect of polyphenols. Ph. D. Thesis, Liaoning University, China, 2020(in Chinese). 田思琪. 三种典型重金属诱导肺支气管上皮细胞(BEAS-2B)损伤及多酚类化合物毒性抑制作用研究. 硕士学位论文, 辽宁大学, 2020. 44 Guo H R, Liu H, Wu H B. International Journal of Molecular Sciences, 2019, 20(19), 4690. 45 Voitkun V, Zhitkovich A, Costa M. Nucleic Acids Research, 1998, 26(8), 2024. 46 Truong H, Lomnicki S, Dellinger B. Environmental Science & Technology, 2010, 44(6), 1933. 47 Dellinger B, Pryor W A, Cueto R, et al. Chemical Research in Toxicology, 2001, 14(10), 1371. 48 Balakrishna S, Lomnicki S, McAvey K M, et al. Particle and Fibre Toxicology, 2009, 6, 11. 49 Abbas I, Badran G, Verdin A, et al. Environmental Chemistry Letters, 2018, 16(2), 439. 50 Li M C, Liu J Y, Zhou J Z, et al. Toxicology Letters, 2021, 351, 5. 51 Ye M, Liu B C, Du H J, et al. Hygiene Research, 2006(2), 135 (in Chinese). 叶萌, 刘秉慈, 杜宏举, 等. 卫生研究, 2006(2), 135. 52 Zhang Q, Meng Z. European Journal of Pharmacology, 2009, 602(1), 117. 53 Last J A, Sun W M, Witschi H. Environmental Health Perspectives, 1994, 102, 179. 54 Liu Y X, Du Q P, Meng Z Q. Acta Scientiae Circumstantiae, 2006, 26(9), 1520. 刘玉香, 杜青平, 孟紫强. 环境科学学报, 2006, 26(9), 1520. 55 Sorg O. Toxicology Letters, 2014, 230(2), 225. 56 Hwang H J, Dornbos P, Steidemann M, et al. Toxicology and Applied Pharmacology, 2016, 304, 121. 57 Novelli M, Beffy P, Masini M, et al. Chemosphere, 2021, 265, 129103. 58 Li C S, Suzuki K. Resources Conservation and Recycling, 2010, 54(11), 905. 59 Pardo M, Li C, Fang Z, et al. Chemical Research in Toxicology, 2021, 34(6), 1588. 60 Zhu M T, Nie G J, Meng H, et al. Accounts of Chemical Research, 2013, 46(3), 622. 61 Dergham M, Lepers C, Verdin A, et al. Chemical Research in Toxicology, 2012, 25(4), 904. 62 Vertegel A A, Siegel R W, Dordick J S. Langmuir, 2004, 20(16), 6800. 63 Schnekenburger M, Talaska G, Puga A. Molecular and Cellular Biology, 2007, 27(20), 7089. 64 Viana M, Lopez J M, Querol X, et al. Atmospheric Environment, 2008, 42(8), 1941. 65 Wang F, Zhang M, Sha W, et al. Molecules, 2020, 25(8), 1827. 66 Degrendele C, Okonski K, Melymuk L, et al. Atmospheric Environment, 2014, 98, 410. 67 Shim I, Kim W, Kim H, et al. Toxics, 2021, 9(7), 167. 68 Tian D D, Yuan X Y, Zhou W, et al. Asian Journal of Ecotoxicology, 2015, 10(3), 288(in Chinese). 田冬冬, 苑晓燕, 周维, 等. 生态毒理学报, 2015, 10(3), 288.